Skip to main content

On Coherence and Consistence in Fuzzy Answer Set Semantics for Residuated Logic Programs

  • Conference paper
Fuzzy Logic and Applications (WILF 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5571))

Included in the following conference series:

Abstract

In this work we recall the first steps towards the definition of an answer set semantics for residuated logic programs with negation, and concentrate on the development of relationships between the notions of coherence and consistence of an interpretation.

Partially supported by the Spanish Science Ministry grant TIN06-15455-C03-01 and by Junta de Andalucía grant P06-FQM-02049.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS, vol. 2143, pp. 748–759. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: Principles of Knowledge Representation and Reasoning (KR 2004), pp. 141–151 (2004)

    Google Scholar 

  3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. of ICLP 1988, pp. 1070–1080 (1988)

    Google Scholar 

  4. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)

    Article  MATH  Google Scholar 

  5. Heymans, S., Vermeir, D.: Integrating semantic web reasoning and answer set programming. Answer Set Programming, 195–209 (2003)

    Google Scholar 

  6. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for the semantic web. Fundamenta Informaticae 82(3), 289–310 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Madrid, N., Ojeda Aciego, M.: Towards an answer set semantics for residuated logic programs. In: IEEE/WIC/ACM Intl. Conf. on Web Intelligence and Intelligent Agent Technology, WI-IAT 2008, pp. 260–264 (2008)

    Google Scholar 

  8. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets and Systems 146(1), 43–62 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: An introduction to fuzzy answer set programming. Ann. Math. Artif. Intell. 50(3-4), 363–388 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wagner, G.: Web rules need two kinds of negation. In: Bry, F., Henze, N., Małuszyński, J. (eds.) PPSWR 2003. LNCS, vol. 2901, pp. 33–50. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Madrid, N., Ojeda-Aciego, M. (2009). On Coherence and Consistence in Fuzzy Answer Set Semantics for Residuated Logic Programs. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2009. Lecture Notes in Computer Science(), vol 5571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02282-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02282-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02281-4

  • Online ISBN: 978-3-642-02282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics