
Chapter 1

Floating-Point LLL: Theoretical and
Practical Aspects

Damien Stehlé

Abstract The text-book LLL algorithm can be sped up considerably by
replacing the underlying rational arithmetic used for the Gram-Schmidt or-
thogonalisation by floating-point approximations. We review how this modifi-
cation has been and is currently implemented, both in theory and in practice.
Using floating-point approximations seems to be natural for LLL even from
the theoretical point of view: it is the key to reach a bit-complexity which is
quadratic with respect to the bit-length of the input vectors entries, without
fast integer multiplication. The latter bit-complexity strengthens the con-
nection between LLL and Euclid’s gcd algorithm. On the practical side, the
LLL implementer may weaken the provable variants in order to further im-
prove their efficiency: we emphasise on these techniques. We also consider the
practical behaviour of the floating-point LLL algorithms, in particular their
output distribution, their running-time and their numerical behaviour. After
25 years of implementation, many questions motivated by the practical side
of LLL remain open.

1.1 Introduction

The LLL lattice reduction algorithm was published in 1982 [35], and was
immediately heartily welcome in the algorithmic community because of the
numerous barriers it broke. Thanks to promising applications, the algorithm
was promptly implemented. For example, as soon as the Summer 1982, Erich
Kaltofen implemented LLL in the Macsyma computer algebra software to
factor polynomials. This implementation followed very closely the original de-
scription of the algorithm. Andrew Odlyzko tried to use it to attack knapsack-

CNRS/Universities of Macquarie, Sydney and Lyon/INRIA/ÉNS Lyon
Dept of Mathematics and Statistics, University of Sydney, NSW 2008, Australia.
e-mail: damien.stehle@gmail.com – http://perso.ens-lyon.fr/damien.stehle

1

2 Damien Stehlé

based cryptosystems, but the costly rational arithmetic and limited power of
computers available at that time limited him to working with lattices of small
dimensions. This led him to replace the rationals by floating-point approxi-
mations, which he was one of the very first persons to do, at the end of 1982.
This enabled him to reduce lattices of dimensions higher than 20.

The reachable dimension was then significantly increased by the use of a
Cray-1, which helped solving low-density knapsacks [34] and disproving the
famous Mertens conjecture [46]. The use of the floating-point arithmetic in
those implementations was heuristic, as no precautions were taken (and no
theoretical methods were available) to assure correctness of the computation
when dealing with approximations to the numbers used within the LLL al-
gorithm.

In the 1990’s, it progressively became important to reduce lattice bases
of higher dimensions. Lattice reduction gained tremendous popularity in the
field of public-key cryptography thanks to the birth of lattice-based cryp-
tosystems [5, 21, 27] and to the methods of Coppersmith to find small roots
of polynomials [14, 15, 16], a very powerful tool in public-key cryptanalysis
(see the survey [38] contained in this book). Lattice-based cryptography in-
volves lattice bases of huge dimensions (502 for the first NTRU challenge and
several hundreds in the case of the GGH challenges), and in Coppersmith’s
method lattices of dimensions between 40 and 100 are quite frequent [10, 39].
Nowadays, very large dimensional lattices are also being reduced in compu-
tational group theory or for factoring univariate polynomials.

All competitive implementations of the LLL algorithm rely on floating-
point arithmetic. Sometimes, however, one wants to be sure of the quality of
the output, to obtain mathematical results, e.g., to prove there is no small
linear integer relation between given numbers. More often, one wants to be
sure that the started execution will terminate. This motivates the study of
the reliability of floating-point operations within LLL, which is the line of
research we are going to survey below. In 1988, Schnorr described the first
provable floating-point variant of the LLL algorithm [50]. This was followed
by a series of heuristic and provable variants [53, 33, 43, 51]. Apart from
these references, most of the practical issues we are to describe are derived
from the codes of today’s fastest floating-point LLL routines: LiDIa’s [1],
Magma’s [11], NTL’s [59], as well as in fplll-2.0 [12].

The practical behaviour of the LLL algorithm is often considered as mys-
terious. Though many natural questions concerning the average behaviour
of LLL remain open in growing dimensions (see the survey [62]), a few im-
portant properties can be obtained by experimentation. It appears then that
there is a general shape for bases output by LLL, that the running-time be-
haves predictively for some families of inputs and that there exists a generic
numerical behaviour. We explain these phenomena and describe how some of
the observed properties may be used to improve the code: for example, guess-
ing accurately the causes of an undesirable behaviour that occurs during the

1 Floating-Point LLL: Theoretical and Practical Aspects 3

execution of a heuristic variant helps selecting another variant which is more
likely to work.

Road-map of the survey. In Section 1.2, we give some necessary back-
ground on LLL and floating-point arithmetic. We then describe the provable
floating-point algorithms in Section 1.3, as well as the heuristic practice-
oriented ones in Section 1.4. In Section 1.5, we report observations on the
practical behaviour of LLL, and finally, in Section 1.6, we draw a list of open
problems and ongoing research topics related to floating-point arithmetic
within the LLL algorithm.

Model of Computation. In the paper, we consider the usual bit-complexity
model. For the integer and arbitrary precision floating-point arithmetics, un-
less stated otherwise, we restrict ourselves to naive algorithms, i.e., we do
not use any fast multiplication algorithm [20]. This choice is motivated by
two main reasons. Firstly, the integer arithmetic operations dominating the
overall cost of the described floating-point LLL algorithms are multiplications
of large integers by small integers (most of the time linear in the lattice di-
mension): using fast multiplication algorithms here is meaningless in practice
since the lattice dimensions remain far below the efficiency threshold between
naive and fast integer multiplications. Secondly, we probably do not know yet
how to fully exploit fast multiplication algorithms in LLL-type algorithms:
having a quadratic cost with naive integer arithmetic suggests that a quasi-
linear cost with fast integer arithmetic may be reachable (see Section 1.6 for
more details).

Other LLL-reduction algorithms. Some LLL-type algorithms have lower
complexity upper bounds than the ones described below, with respect to
the lattice dimension [55, 60, 32, 33, 51]. However, their complexity upper
bounds are worse than the ones below with respect to the bit-sizes of the
input matrix entries. Improving the linear algebra cost and the arithmetic
cost can be thought of as independent strategies to speed up lattice reduction
algorithms. Ideally, one would like to be able to combine these improvements
into one single algorithm. Improving the linear algebra cost of LLL is not the
scope of the present survey, and for this topic we refer to [48].

Notation. During the survey, vectors will be denoted in bold. If b is an n-
dimensional vector, we denote its i-th coordinate by b[i], for i ≤ n. Its
length

√

∑n
i=1 b[i]2 is denoted by ‖b‖. If b1 and b2 are two n-dimensional

vectors, their scalar product ∑n
i=1 b1[i] ·b2[i] is denoted by 〈b1,b2〉. If x is a

real number, we define ⌊x⌉ as the closest integer to x (the even one if x is
equally distant from two consecutive integers). We use bars to denote ap-
proximations: for example µ̄i, j is an approximation to µi, j. By default, the
function log will be the base-2 logarithm.

4 Damien Stehlé

1.2 Background Definitions and Results

An introduction to the geometry of numbers can be found in [37]. The algo-
rithmic aspects of lattices are described in the present book, in particular in
the survey [48], and therefore we only give the definitions and results that
are specific to the use of floating-point arithmetic within LLL. In particular,
we briefly describe floating-point arithmetic. We refer to the first chapters
of [26] and [40] for more details.

1.2.1 Floating-Point Arithmetic

Floating-point arithmetic is the most frequent way to simulate real numbers
in a computer. Contrary to a common belief, floating-point numbers and
arithmetic operations on floating-point numbers are rigorously specified, and
mathematical proofs, most often in the shape of error analysis, can be built
upon these specifications.

The most common floating-point numbers are the binary double precision
floating-point numbers (doubles for short). They are formally defined in the
IEEE-754 standard [2]. The following definition is incomplete with respect to
the IEEE-754 standard, but will suffice for our needs.

Definition 1. A double consists of 53 bits of mantissa m which are inter-
preted as a number in {1,1+ 2−52,1+ 2 ·2−52, . . . ,2−2−52}; a bit of sign s;
and 11 bits of exponent e which are interpreted as an integer in [−1022,1023].
The real number represented that way is (−1)s ·m ·2e.

If x is a real number, we define ⋄(x) as the closest double to x, choosing the
one with an even mantissa in case there are two possibilities. Other rounding
modes are defined in the standard, but here we will only use the rounding to
nearest. We will implicitly extend the notation ⋄(·) to extensions of the double
precision. The IEEE-754 standard also dictates how arithmetic operations
must be performed on doubles. If op ∈ {+,−,×,÷}, the result of (a op b)
where a and b are doubles is the double corresponding to the rounding of the
real number (a op b), i.e., ⋄(a op b). Similarly, the result of

√
a is ⋄(√a).

Doubles are very convenient because they are widely available, they are
normalised, they are extremely efficient since most often implemented at the
processor level, and they suffice in many applications. They nevertheless have
two major limitations: the exponent is limited (only 11bits) and the precision
is limited (only 53 bits).

A classical way to work around the exponent limitation is to batch an
integer (most often a 32-bit integer suffices) to each double, in order to extend
the exponent. For example, the pair (x,e) where x is a double and e is an
integer could encode the number x · 2e. One must be careful that a given
number may have several representations, because of the presence of two

1 Floating-Point LLL: Theoretical and Practical Aspects 5

exponents (the one of the double and the additional one), and it may thus
prove useful to restrict the range of the double to [1,2) or to any other binade.
An implementation of such a double plus exponent arithmetic is the dpe1

library written by Patrick Pélissier and Paul Zimmermann, which satisfies
specifications similar to the IEEE-754 standard. We will use the term dpe to
denote this extension of the standard doubles.

If for some application a larger precision is needed, one may use arbitrary
precision real numbers. In this case, a number comes along with its precision,
which may vary. It is usually implemented from an arbitrary precision integer
package. An example is MPFR [47], which is based on GNU MP [23]. It is a
smooth extension of the IEEE-754 standardised doubles. Another such imple-
mentation is the RR-class of Shoup’s Number Theory Library [59], which can
be based, at compilation time, either on GNU MP or on NTL’s arbitrary pre-
cision integers. Arbitrary precision floating-point numbers are semantically
very convenient, but one should try to limit their use in practice since they
are significantly slower than the processor-based doubles: even if the precision
is chosen to be 53 bits, the speed ratio for the basic arithmetic operations
can be larger than 15.

1.2.2 Lattices

A lattice L is a discrete subgroup of some R
n. Such an object can al-

ways be represented as the set of integer linear combinations of some vec-
tors b1, . . . ,bd ∈ R

n with d ≤ n. If these vectors are linearly independent, we
say that they form a basis of the lattice L. A given lattice may have an
infinity of bases, related to one another by unimodular transforms, i.e., by
multiplying on the right the column expressions of the basis vectors by a
square integral matrix of determinant ±1. The cardinalities d of the bases
of a given lattice match and are called the lattice dimension, whereas n is
called the embedding dimension. Both are lattice invariants: they depend on
the lattice but not on the chosen basis of the lattice. There are two other
important lattice invariants: the volume vol(L):=

√

det(Bt ·B) where B is the
matrix whose columns are any basis of L, and the minimum λ (L) which is
the length of a shortest non-zero lattice vector.

Gram-Schmidt orthogonalisation. Let b1, . . . ,bd be linearly independent
vectors. Their Gram-Schmidt orthogonalisation (GSO for short) b∗

1, . . . ,b
∗
d is

the orthogonal family defined recursively as follows: the vector b∗
i is the com-

ponent of the vector bi which is orthogonal to the linear span of the vec-

tors b1, . . . ,bi−1. We have b∗
i = bi−∑i−1

j=1 µi, jb∗
j where µi, j =

〈bi,b∗j 〉
∥

∥

∥
b∗j

∥

∥

∥

2 . For i ≤ d we

let µi,i = 1. The quantity µi, j is the component of the vector bi on the vector b∗
j

1 http://www.loria.fr/~zimmerma/free/dpe-1.4.tar.gz

6 Damien Stehlé

when written as a linear combination of the b∗
k ’s. The Gram-Schmidt orthogo-

nalisation is widely used in lattice reduction because a reduced basis is some-
how close to being orthogonal, which can be rephrased conveniently in terms
of the GSO coefficients: the ‖b∗

i ‖’s must not decrease too fast, and the µi, j’s
must be relatively small. Another interesting property of the GSO is that the
volume of the lattice L spanned by the bi’s satisfies vol(L) = ∏i≤d ‖b∗

i ‖.
Notice that the GSO family depends on the order of the vectors. Fur-

thermore, if the bi’s are integer vectors, the b∗
i ’s and the µi, j’s are rational

numbers. We also define the variables ri, j for i ≥ j as follows: for any i ∈ [1,d],

we let ri,i = ‖b∗
i ‖2, and for any i ≥ j we let ri, j = µi, jr j, j = 〈bi,b∗

j〉. We have
the relation ri, j = 〈bi,b j〉 −∑k< j ri,kµ j,k, for any i ≥ j. In what follows, the
GSO family denotes the ri, j’s and µi, j’s. Some information is redundant in
rational arithmetic, but in the context of our floating-point calculations, it is
useful to have all these variables.

QR and Cholesky factorisations. The GSO coefficients are closely related
to the Q and R factors of the QR-factorisation of the basis matrix. Suppose
that the linearly independent vectors b1, . . . ,bd are given by the columns

of an n× d matrix B. Then one can write B = Q ·
[

R
0

]

where Q is an n×
n orthogonal matrix and R is a d × d upper triangular matrix with positive
diagonal entries. The first d columns of Q and the matrix R are unique and
one has the following relations with the GSO family:

• For i ≤ d, the i-th column Qi of the matrix Q is the vector 1
‖b∗i ‖

b∗
i .

• The diagonal coefficient Ri,i is ‖b∗
i ‖.

• If i < j, the coefficient Ri, j is
〈b j ,b∗i 〉
‖b∗i ‖

=
r j,i√
ri,i

.

In the rest of the survey, in order to avoid any confusion between the matri-
ces (Ri, j)i≥ j and (ri, j)i≤ j, we will only use the ri, j’s.

The Cholesky factorisation applies to a symmetric definite positive matrix.
If A is such a matrix, its Cholesky factorisation is A = Rt · R, where R is
upper triangular with positive diagonal entries. Suppose now that A is the
Gram matrix Bt ·B of a basis matrix B. Then the R-matrix of the Cholesky
factorisation of A is exactly the R-factor of the QR-factorisation of B. The
QR and Cholesky factorisations have been extensively studied in numerical
analysis and we refer to [26] for a general overview.

Size-reduction. A basis (b1, . . . ,bd) is called size-reduced with factor η ≥ 1/2
if its GSO family satisfies |µi, j| ≤ η for all 1≤ j < i ≤ d. The i-th vector bi

is size-reduced if |µi, j| ≤ η for all j ∈ [1, i− 1]. Size-reduction usually refers
to η = 1/2, but it is essential for the floating-point LLLs to allow at least
slightly larger factors η , since the µi, j’s will be known only approximately.

The Lenstra-Lenstra-Lovász reduction. A basis (b1, . . . ,bd) is called
LLL-reduced with factor (δ ,η) where δ ∈ (1/4,1] and η ∈ [1/2,

√
δ) if the

1 Floating-Point LLL: Theoretical and Practical Aspects 7

basis is size-reduced with factor η and if its GSO satisfies the (d−1) follow-
ing conditions, often called Lovász conditions:

δ ·
∥

∥b∗
κ−1

∥

∥

2 ≤
∥

∥b∗
κ + µκ,κ−1b∗

κ−1

∥

∥

2
,

or equivalently
(

δ −µ2
κ,κ−1

)

· rκ−1,κ−1 ≤ rκ,κ . This implies that the norms of

the GSO vectors b∗
1, . . . ,b

∗
d never drop too much: intuitively, the vectors are

not far from being orthogonal. Such bases have useful properties. In partic-
ular, their first vector is relatively short. Theorem 1 is an adaptation of [35,
Equations (1.8) and (1.9)].

Theorem 1. Let δ ∈ (1/4,1] and η ∈ [1/2,
√

δ). Let (b1, . . . ,bd) be a (δ ,η)-
LLL-reduced basis of a lattice L. Then:

‖b1‖ ≤
(

1
δ −η2

) d−1
4

·vol(L)
1
d ,

d

∏
i=1

‖bi‖ ≤
(

1
δ −η2

)

d(d−1)
4

·vol(L).

LLL-reduction classically refers to the factor pair (3/4,1/2) initially chosen
in [35], in which case the quantity 1

δ−η2 is conveniently equal to 2. But the

closer δ and η respectively to 1 and 1/2, the smaller the upper bounds in
Theorem 1. In practice, one often selects δ ≈ 1 and η ≈ 1/2, so that we almost

have ‖b1‖ ≤ (4/3)
d−1

4 ·vol(L)
1
d . It also happens that one selects weaker factors

in order to speed up the execution of the algorithm (we discuss this strategy
in Subsection 1.4.3).

Input: A basis (b1, . . . ,bd) and a valid pair of factors (δ ,η).
Output: A (δ ,η)-LLL-reduced basis of L[b1, . . . ,bd].

1. r1,1:=‖b1‖2, κ :=2. While κ ≤ d do
2. η-size-reduce bκ :
3. Compute µκ,1, . . . ,µκ,κ−1 and rκ,κ , using the previous GSO coefficients.
4. For i = κ −1 down to 1 do, if |µκ,i| > η:
5. bκ :=bκ −⌊µκ,i⌉bi, update µκ,1, . . . ,µκ,i accordingly.

6. If
(

δ −µ2
κ,κ−1

)

· rκ−1,κ−1 ≤ rκ,κ then κ :=κ +1.

7. Else swap bκ and bκ−1 and set κ :=max(2,κ −1).
8. Return (b1, . . . ,bd).

Fig. 1.1 The LLL algorithm.

The LLL algorithm. We give in Figure 1.1 a description of LLL that we
will use to explain its floating-point variants. The LLL algorithm obtains in
polynomial time a (δ ,η)-reduced basis, even if one chooses η = 1/2. The

8 Damien Stehlé

factor δ < 1 can be chosen arbitrarily close to 1. It is unknown whether
polynomial time complexity can be achieved or not for δ = 1 (partial results
can be found in [6] and [36]).

The floating-point LLL algorithms do not achieve η = 1/2, because the
GSO coefficients are known only approximately. Choosing η = 1/2 in these
algorithms may make them loop forever. Similarly, one has to relax the LLL
factor δ , but this relaxation only adds up with the already necessary relax-
ation of δ in the classical LLL algorithm. The LLL factor η can be chosen
arbitrarily close to 1/2 in the provable floating-point L2 algorithm of Nguyen
and Stehlé [43] (to be described in Section 1.3) which terminates in quadratic
time (without fast integer multiplication) with respect to the bit-size of the
matrix entries. Finally, η = 1/2 can also be achieved within the same com-
plexity: firstly run the L2 algorithm on the given input basis with the same
factor δ and a factor η ∈ (1/2,

√
δ); and secondly run the LLL algorithm

on the output basis. One can notice that the second reduction is simply a
size-reduction and can be performed in the prescribed time.

Remarkable variables in the LLL algorithm. The LLL index κ(t) de-
notes the vector under investigation at the t-th loop iteration of the algorithm.
Its initial value is 2 and at the end of the execution, one has κ(τ +1) = d +1,
where τ is the number of loop iterations and κ(τ + 1) is the value of κ at
the end of the last loop iteration. We will also use the index α(t) (introduced
in [43]), which we define below and illustrate in Figure 1.2. It is essentially
the smallest swapping index since the last time the index κ was at least κ(t)
(this last time is rigorously defined below as φ(t)).

Definition 2. Let t be a loop iteration. Let φ(t) = max(t ′ < t,κ(t ′) ≥ κ(t)) if
it exists and 1 otherwise, and let α(t) = min(κ(t ′), t ′ ∈ [φ(t), t −1])−1.

tτ1

2

d +1

κ

Fig. 1.2 A possible curve for κ(t) (thin continuous line), with the corresponding
curve for α(t) (thick line when κ increases, and same as κ otherwise)

The index α(t) has the remarkable property that between the loop itera-
tions φ(t) and t, the vectors b1, . . . ,bα(t) remain unchanged: because κ remains

1 Floating-Point LLL: Theoretical and Practical Aspects 9

larger than α(t), these first vectors are not swapped nor size-reduced between
these iterations.

1.3 The Provable Floating-Point LLL Algorithms

When floating-point calculations are mentioned in the context of the LLL al-
gorithm, this systematically refers to the underlying Gram-Schmidt orthogo-
nalisation. The transformations on the basis and the basis itself remain exact,
because one wants to preserve the lattice while reducing it. The LLL algo-
rithm heavily relies on the GSO. For example, the LLL output conditions
involve all the quantities µi, j for j < i ≤ d and ‖b∗

i ‖2 for i ≤ d. The floating-
point arithmetic is used on these GSO quantities µi, j and ‖b∗

i ‖2.
In this section, we are to describe three ways of implementing this idea:

the first way is the most natural solution, but fails for different reasons, that
we emphasize because they give some intuition about the provable variants;
the second one, due to Schnorr [50], is provable but suffers from a number
of practical drawbacks; and the last one, due to Nguyen and Stehlé [43], was
introduced recently and seems more tractable in practice.

The following table summarises the complexities of two rational LLL al-
gorithms and the two provable floating-point LLLs described in this section.
The second line contains the required precisions, whereas the last line consists
of the best known complexity upper bounds. The variant of Kaltofen [28] dif-
fers only slightly from LLL. The main improvement of the latter is to analyse
more tightly the cost of the size-reductions, providing a complexity bound of
total degree 8 instead of 9. This bound also holds for the LLL algorithm. On
the floating-point side, both Schnorr’s algorithm and L2 have complexities
of total degree 7, but the complexity bound of L2 is always better and is
quadratic with respect to logB, the bit-size of the input matrix entries.

LLL [35] Kaltofen [28] Schnorr [50] L2 [43]

O(d logB) O(d logB) ≥ 12d +7log2 B d log2 3≈ 1.58d

O(d5n log3 B) O(d4n(d + logB) log2 B) O(d3n(d + logB)2 logB) O(d4n logB(d + logB))

Fig. 1.3 Complexity bounds of the original LLL and the provable floating-point LLL
algorithms.

10 Damien Stehlé

1.3.1 A First Attempt

A natural attempt to define a floating-point LLL algorithm is as follows: one
keeps the general structure of LLL as described in Figure 1.1, and computes
approximations to the GSO quantities, by converting into floating-point arith-
metic the formulas that define them (as given in Subsection 1.2.2). The scalar
product 〈bi,b j〉 is approximated by the quantity ḡi, j, computed as follows:

ḡi, j:=0. For k from 1 to n, do ḡi, j:=⋄ (ḡi, j +⋄(⋄(bi[k]) · ⋄(b j[k]))).

Similarly, the quantities ri, j and µi, j are approximated respectively by
the r̄i, j’s and µ̄i, j’s, computed as follows:

r̄i, j:=ḡi, j. For k from 1 to j−1, do r̄i, j:=⋄
(

r̄i, j −⋄
(

r̄i,k · µ̄ j,k
))

.

µ̄i, j:=⋄ (r̄i, j/r̄ j, j).

As a first consequence, since the µi, j’s are known only approximately,
one cannot ensure ideal size-reduction anymore. One has to relax the condi-
tion |µi, j| ≤ 1/2 into the condition |µi, j| ≤ η for some η > 1/2 that takes into
account the inaccuracy of the µ̄i, j’s.

This first attempt suffers from three major drawbacks. Firstly, the scalar
products can be miscalculated. More precisely, the quantity ḡi, j is a sum of
floating-point numbers and the classical phenomena of cancellation and loss
of precision can occur. We do not have better than the following error bound:

∣

∣ḡi, j −〈bi,b j〉
∣

∣ ≤ f (n, ℓ) · ∑
k≤n

|bi[k]| ·
∣

∣b j[k]
∣

∣ ,

where the function f depends on the precision ℓ and the number n of elements
to sum. Unfortunately, such a summation prevents us from getting absolute
error bounds on the µi, j’s. In order to obtain an absolute error bound on µi, j =
〈bi,b j〉

ri,i
, one would like an error on 〈bi,b j〉 which is no more than proportional

to ri,i = ‖b∗
i ‖2. We illustrate this with an example in dimension 2 and double

precision. Consider the columns of the following matrix:

[

1 2100+240

−1 2100−240

]

.

Here r1,1 = 2 and we would like the error on 〈b2,b1〉 to be small compared
to that quantity. If the scalar product of the two vectors is computed by
first rounding the matrix entries to double precision, then it is estimated
to 0. This implies that the computed µ̄2,1 is 0, and the basis is deemed LLL-
reduced. But it is not, since in fact µ2,1 = 240, which contradicts the size-
reduction condition. If one changes the values 240 by any values below 2100,
one sees that the less significant bits are simply ignored though they may
still be contributing significantly to µ2,1. In order to test the size-reduction
conditions from the basis matrix, it seems necessary to use a precision which

1 Floating-Point LLL: Theoretical and Practical Aspects 11

is at least as large as the bit-length of the input matrix entries, which may
be very expensive.

Secondly, the precision may not be sufficient to perform the size-reductions
completely. It can easily be illustrated by an example. Consider the following
lattice basis:

[

1 254+1
0 1

]

.

The algorithm will compute µ̄2,1 = 254: the bit-length of the true quan-
tity is too large to be stored in a double precision floating-point number.
Then it will try to size-reduce the second vector by performing the opera-
tion b2:=b2−254b1 = (1,1)t . It will then check that Lovász’s condition is sat-
isfied and terminate. Unfortunately, the output basis is still not size-reduced,
because µ2,1 = 1. One can change the example to make µ2,1 as large as de-
sired. The trouble here is that the mantissa size is too small to handle the
size-reduction. Either more precision or a reparation routine seems necessary.
Such a reparation process will be described in Subsection 1.3.3.

The third weakness of the first attempt is the degradation of precision
while computing the GSO coefficients. Indeed, a given r̄i, j is computed from
previously computed and already erroneous quantities r̄i,k and µ̄ j,k, for k ≤ j.
The floating-point errors not only add up, but also get amplified. No method
to prevent this amplification is known, but it is known how to bound and work
around the phenomenon: such techniques come from the field of numerical
analysis. In particular, it seems essential for the good numerical behaviour
of the LLL algorithm to always consider a vector bk such that all previous
vectors bi for i < k are LLL-reduced: this means that when one is computing
the orthogonalisation of a vector with respect to previous vectors, the latter
are always LLL-reduced and therefore fairly orthogonal, which is good for
the numerical behaviour. The structure of the LLL algorithm as described in
Figure 1.1 guarantees this property.

1.3.2 Schnorr’s Algorithm

Schnorr [50] described the first provable variant of the LLL algorithm re-
lying on floating-point arithmetic. Instead of using GSO coefficients repre-
sented as rational numbers of bit-lengths O(d logB), Schnorr’s algorithm ap-
proximates them by arbitrary precision floating-point numbers, of mantissa
size ℓ = O(d + logB). This provides a gain of 2 in the total degree of the
polynomial complexity of LLL: from O(d5n log3 B) to O(d3n(d + logB)2 logB).

In Figure 1.4, we give a description of this algorithm. It uses exact integer
operations on the basis vectors (Steps 2 and 5), and approximate opera-
tions on the inverses of the partial Gram matrices Gk = (〈bi,b j〉)i, j≤k and the
inverse (νi, j)i, j≤d of the lower triangular matrix made of the µi, j’s. These op-

12 Damien Stehlé

erations are not standard floating-point operations, since most of them are
in fact exact operations on approximate values: in floating-point arithmetic,
the result of a basic arithmetic operation is a floating-point number closest
to the true result, whereas here the true result is kept, without any round-
ing. This is the case everywhere, except at Step 8, where the quantities are
truncated in order to avoid a length blow-up. The truncation itself is similar
to fixed-point arithmetic since it keeps a given number of bits after the point
instead of keeping a given number of most significant bits. It can be checked
that all quantities computed never have more than c · ℓ bits after the point,
for some small constant c depending on the chosen number of iterations at
Step 7. At Step 7, a few steps of Schulz’s iteration are performed. Schulz’s
iteration [57] is a classical way to improve the accuracy of an approximate in-

verse (here G−1
k) of a known matrix (here Gk). This is a matrix generalisation

of Newton’s iteration for computing the inverse of a real number.

Input: A basis (b1, . . . ,bd), a precision ℓ.
Output: A (0.95,0.55)-reduced basis of the lattice spanned by the bi’s.

1. κ :=2,b∗
1:=b1.

2. r:=⌊〈bκ , b̄∗
κ−1〉/‖b̄∗

κ−1‖2⌉, bκ :=bκ − rbκ−1.
3. If (‖bκ‖2−∑ j<κ−1〈bκ , b̄∗

j〉/‖b̄∗
j‖2) ·1.025≥ ‖b̄∗

κ−1‖2, go to Step 5. Otherwise:

4. Exchange bκ and bκ−1, κ:=max(2,κ −1). Update G−1
κ and go to Step 2.

5. For j from κ −2 down to 1, do r:=⌊〈bκ , b̄∗
j〉/‖b̄∗

j‖2⌉, bκ :=bκ − rb j.

6. Compute a first approximation of νκ,1, . . . ,νκ,κ−1,b∗
κ ,G−1

κ , from the bi’s

and the matrix G−1
κ−1.

7. Use a finite number of iterations of Schulz’s method on G−1
k using Gk.

This helps improving the approximations of νκ,1, . . . ,νκ,κ−1,b∗
κ and G−1

κ .
8. Truncate the ν̄κ,i’s to ℓ bits after the point. Compute the corresponding

vectors b̄∗
κ and G−1

κ .
9. κ :=κ +1. If κ ≤ n, go to Step 2.

Fig. 1.4 Schnorr’s algorithm.

Schnorr proved that by taking a precision ℓ = c1 · d + c2 · logB for some
explicitly computable constants c1 and c2, the algorithm terminates and re-
turns a (0.95,0.55)-LLL-reduced basis. The constants 0.95 and 0.55 can be
chosen arbitrarily close but different to respectively 1 and 0.5, by changing
the constants c1 and c2 as well as the constant 1.025 from Step 3. Finally, it
can be checked that the bit-cost of the algorithm is O

(

d3n(d + logB)2 logB
)

.

This algorithm prevents the three problems of the naive floating-point LLL
from occurring: the inaccuracy of the scalar products is avoided because they
are always computed exactly; the incomplete size-reductions cannot occur
because the precision is set large enough to guarantee that any size-reduction
is performed correctly and fully at once; the accumulation of inaccuracies
is restrained because most of the operations performed on approximations

1 Floating-Point LLL: Theoretical and Practical Aspects 13

are done exactly, so that few errors may add up, and the amplification of
the errors (due to a bad conditioning of the problem) is compensated by the
large precision.

Schnorr’s algorithm gives a first answer to the question of using approxi-
mate GSO quantities within the LLL algorithm, but:

• The constants c1 and c2 on which the precision depends may be large.
What is most annoying is that the precision actually depends on logB.
This means that the approximate operations on the GSO still dominate
the integer operations on the basis matrix.

• As explained above, it is not using standard floating-point arithmetic,
but rather a mix between exact computations on approximate values and
arbitrary precision fixed-point arithmetic.

1.3.3 The L2 Algorithm

The L2 algorithm was introduced by Nguyen and Stehlé [43] in 2005. It is
described in Figure 1.5. L2 is a variant of the LLL algorithm relying on ar-
bitrary precision floating-point arithmetic for the underlying Gram-Schmidt
orthogonalisation, in a provable way. Apart from giving a sound basis for
floating-point calculations within LLL, it is also the sole variant of LLL that
has been proven to admit a quadratic bit-complexity with respect to the
bit-size of the input matrix entries. This latter property is very convenient
since LLL can be seen as a multi-dimensional generalisation of Euclid’s gcd
algorithm, Gauss’ two-dimensional lattice reduction algorithm and the three
and four dimensional greedy algorithm of Semaev, Nguyen and Stehlé [58, 42],
which all admit quadratic complexity bounds. This property, from which the
name of the algorithm comes, arguably makes it a natural variant of LLL.

In L2, the problem of scalar product cancellations is handled very simply,
since all the scalar products are known exactly during the whole execution
of the algorithm. Indeed, the Gram matrix of the initial basis matrix is com-
puted at the beginning of the algorithm and updated for each change of
the basis vectors. In fact, the algorithm operates on the Gram matrix and
the computed transformations are forwarded to the basis matrix. It can be
seen that this can be done with only a constant factor overhead in the overall
complexity. Secondly, the size-reduction procedure is modified into a lazy size-
reduction. One size-reduces as much as possible given the current knowledge
of the Gram-Schmidt orthogonalisation, then recomputes the corresponding
Gram-Schmidt coefficients from the exact Gram matrix and restarts the lazy
size-reduction until the vector under question stays the same. When this
happens, the vector is size-reduced and the corresponding Gram-Schmidt
coefficients are well approximated. This lazy size-reduction was already con-
tained inside NTL’s LLL, and described in [33] in the context of a heuristic
floating-point LLL algorithm based on Householder transformations. In this

14 Damien Stehlé

context, fixing η = 1/2 can have dramatic consequences: apart from asking
for something which is not reachable with floating-point computations, the
lazy size-reduction (i.e., the inner loop between Steps 4 and 8 in Figure 1.5)
may loop forever. Finally, an a priori error analysis provides a bound on the
loss of accuracy, which provides the provably sufficient precision.

Input: A valid pair (δ ,η) with η > 1/2, a basis (b1, . . . ,bd) and a precision ℓ.
Output: A (δ ,η)-LLL-reduced basis.

1. Compute exactly G = G(b1, . . . ,bd), η−:= η+1/2
2 , δ+:= δ+1

2 .
2. r̄1,1:=⋄ (〈b1,b1〉), κ :=2. While κ ≤ d, do
3. η-size-reduce bκ :
4. Compute the r̄κ, j’s and µ̄κ, j’s from G and the previous r̄i, j’s and µ̄i, j’s.
5. If maxi<κ |µ̄κ,i| > η−, then, for i = κ −1 down to 1, do:
6. X :=⌊µ̄κ,i⌉, bκ :=bκ −X ·bi and update G(b1, . . . ,bd) accordingly.
7. For j = 1 to i−1, µ̄κ, j:=⋄ (µ̄κ, j −⋄(X · µ̄i, j)).
8. Go to Step 4.
9. If δ+ · r̄κ−1,κ−1 < r̄κ,κ + µ̄2

κ,κ−1r̄κ−1,κ−1, κ:=κ +1.
10. Else, swap bκ−1 and bκ , update G, µ̄ and r̄ accordingly, κ :=max(2,κ −1).
11. Return (b1, . . . ,bd).

Fig. 1.5 The L2 algorithm.

Theorem 2 ([43, Theorem 1]). Let (δ ,η) such that 1/4< δ < 1 and 1/2<

η <
√

δ . Let c = log (1+η)2+ε
δ−η2 +C, for some arbitrary ε ∈ (0,1/2) and C > 0.

Given as input a d-dimensional lattice basis (b1, . . . ,bd) in Z
n with maxi ‖bi‖≤

B, the L2 algorithm of Figure 1.5 with precision ℓ = cd +o(d) outputs a (δ ,η)-
LLL-reduced basis in time O

(

d4n(d + logB) logB
)

. More precisely, if τ denotes

the number of iterations of the loop between Steps 3 and 10, then the running

time is O
(

d2n(τ +d log(dB))(d + logB)
)

.

The precision ℓ = cd +o(d) can be made explicit from the correctness proof
of [43]. It suffices that the following inequality holds, for some arbitrary C > 0:

d2
(

(1+η)2 + ε
δ −η2

)d

2−ℓ+10+Cd ≤ min

(

ε,η − 1
2
,1−δ

)

.

Notice that with double precision (i.e., ℓ = 53), the dimension up to which
the above bound guarantees that L2 will work correctly is very small. Nev-
ertheless, the bound is likely to be loose: in the proof of [43], the asymp-
totically negligible components are chosen to simplify the error analysis.
Obtaining tighter bounds for the particular case of the double precision
would be interesting in practice for small dimensions. For larger dimensions,
the non-dominating components become meaningless. Asymptotically, in the
case of LLL-factors (δ ,η) that are close to (1,1/2), a floating-point preci-
sion ℓ = 1.6·d suffices.

1 Floating-Point LLL: Theoretical and Practical Aspects 15

Here is a sketch of the complexity analysis of the L2 algorithm. We refer
to [41] for more details.

1. There are τ = O(d2 logB) loop iterations.

2. In a given loop iteration, there can be up to O
(

1+ logB
d

)

iterations within

the lazy size-reduction. However, most of the time there are only O(1) such
loop iterations. The lengthy size-reductions cannot occur often during a
given execution of L2, and are compensated by the other ones. In the rig-
orous complexity analysis, this is formalised by an amortised analysis (see
below for more details). In practice, one can observe that there are usually
two iterations within the lazy size-reduction: the first one makes the |µκ,i|’s
smaller than η and the second one recomputes the µκ,i’s and rκ,i’s with
better accuracy. This is incorrect in full generality, especially when the
initial µκ,i’s are very large.

3. In each iteration of the lazy size-reduction, there are O(dn) arithmetic
operations.

4. Among these arithmetic operations, the most expensive ones are those
related to the coefficients of the basis and Gram matrices: these are es-
sentially multiplications between integers of lengths O(logB) and the com-
puted X ’s, which can be represented on O(d) bits.

The proof of the quadratic complexity bound generalises the complexity
analysis of Euclid’s gcd algorithm. In Euclid’s algorithm, one computes the
gcd of two integers r0 > r1 > 0 by performing successive euclidean divisions:
ri+1 = ri−1−qiri, with |ri+1|< |ri|, until one gets 0. Standard arguments show
that the number of divisions is O(logr0). To obtain a quadratic complexity
bound for Euclid’s algorithm, one has to compute qi by using only some (es-
sentially logqi ≈ log|ri−1|− log|ri|) of the most significant bits of ri−1 and ri,
to get ri+1 with a bit-complexity O(logr0 ·(1+ log|ri−1|− log|ri|)). It is crucial
to consider this bound instead of the weaker O

(

log2 |ri−1|
)

to be able to use
an amortised cost analysis: the worst-case cost of a sequence of steps can be
much lower than the sum of the worst cases of each step of the sequence. In
the quadratic complexity bound of the L2 algorithm, the euclidean division
becomes the lazy size-reduction and the term O(logr0 · (1+ log|ri−1|− log|ri|))
becomes O

(

logB · (d + log‖bκ(t)‖− log‖bα(t)‖)
)

for the t-th loop iteration: in-
tuitively, the cost of the size-reduction does not depend on the α(t)−1 first
vectors, since the vector bκ(t) is already size-reduced with respect to them.
In the analysis of Euclid’s algorithm, terms cancel out as soon as two consec-
utive steps are considered, but in the case of L2, one may need significantly
more than two steps to observe a possible cancellation. The following lemma
handles this difficulty.

Lemma 1 ([43, Lemma 2]). Let k ∈ [2,d] and t1 < .. . < tk be loop iterations

of the L2 algorithm such that for any j ≤ k, we have κ(t j) = k. For any loop

iteration t and any i≤ d, we define b(t)
i as the i-th basis vector at the beginning

of the t-th loop iteration. Then there exists j < k such that:

16 Damien Stehlé

d(δ −η2)−d ·
∥

∥

∥b
(t j)

α(t j)

∥

∥

∥ ≥
∥

∥

∥b(tk)
k

∥

∥

∥ .

This result means that when summing all the bounds of the costs of the
successive loop iterations, i.e., O

(

logB · (d + log‖bκ(t)‖− log‖bα(t)‖)
)

, some
quasi-cancellations of the following form occur: a term log‖bκ(t)‖ can be can-
celled out with a term log‖bα(t ′)‖, where the relationship between t ′ and t is
described in the lemma. This is not exactly a cancellation, since the difference
of the two terms is replaced by O(d) (which does not involve the size of the
entries).

The proof of correctness of the L2 algorithm relies on a forward error
analysis of the Cholesky factorisation algorithm while applied to a Gram
matrix of a basis whose first vectors are already LLL-reduced. We give here
a sketch of the error analysis in the context of a fully LLL-reduced basis (i.e.,

the whole basis is LLL-reduced). This shows the origin of the term (1+η)2

δ−η2 in

Theorem 2.
We define err j = maxi∈[j,d]

|r̄i, j−ri, j |
r j, j

, i.e., the approximation error on the ri, j’s

relatively to r j, j, and we bound its growth as j increases. We have:

err1 = max
i≤d

| ⋄ 〈bi,b1〉−〈bi,b1〉|
‖b1‖2 ≤ 2−ℓ ·max

i≤d

|〈bi,b1〉|
‖b1‖2 = 2−ℓ ·max

i≤d
|µi,1| ≤ 2−ℓ,

because of the size-reduction condition. We now choose j ∈ [2,d]. We have,
for any i ≤ d and any k < j:

|µ̄i,k −µi,k| <∼
∣

∣

∣

∣

rk,k

r̄k,k

∣

∣

∣

∣

errk + |ri,k|
∣

∣

∣

∣

1
r̄k,k

− 1
rk,k

∣

∣

∣

∣

<∼ (η +1) · errk,

where we neglected low-order terms and used the fact that |ri,k| ≤ η · rk,k,
which comes from the size-reduction condition. This implies that:

| ⋄ (µ̄ j,k · r̄i,k)−µ j,kri,k| <∼ |µ̄ j,k −µ j,k| · |r̄i,k|+ |µ j,k| · |r̄i,k − ri,k|
<∼ η(η +2) · errk · ‖b∗

k‖2,

where we also neglected low-order terms and used the size-reduction condition
twice. Thus,

err j
<∼ η(η +2) ∑

k< j

‖b∗
k‖2

‖b∗
j‖2 errk

<∼ η(η +2) ∑
k< j

(δ −η2)k− j · errk,

by using the fact that Lovász’s conditions are satisfied. This finally gives

err j
<∼

(

(1+η)2

δ−η2

) j
· err1.

1 Floating-Point LLL: Theoretical and Practical Aspects 17

1.4 Heuristic Variants and Implementations of the

Floating-Point LLL

Floating-point arithmetic has been used in the LLL implementations since the
early 1980’s, but only very few papers describe how this should be done in or-
der to balance efficiency and correctness. The reference for LLL implementers
is the article by Schnorr and Euchner on practical lattice reduction [52, 53].
Until very recently, all the fastest LLL implementations were relying on it,
including the one in Victor Shoup’s NTL, Allan Steel’s LLL in Magma, and
LiDIA’s LLL (written by Werner Backes, Thorsten Lauer, Oliver van Sprang
and Susanne Wetzel). Magma’s LLL is now relying on the L2 algorithm. In
this section, we describe the Schnorr-Euchner heuristic floating-point LLL,
and explain how to turn the L2 algorithm into an efficient and reliable code.

1.4.1 The Schnorr-Euchner Heuristic LLL

Schnorr-Euchner’s floating-point LLL follows very closely the classical de-
scription of LLL. It mimics the rational LLL while trying to work around
the three pitfalls of the naive strategy (see Section 1.3). Let us consider these
three difficulties separately.

It detects cancellations occurring during the computation of scalar prod-
ucts (at Step 3 of the algorithm of Figure 1.1), by comparing their com-
puted approximations with the (approximate) product of the norms of the
corresponding vectors. Since norms consist in summing positive values, no
cancellation occurs while computing them approximately, and the computed
values are therefore very reliable. If more than half the precision within the
scalar product is likely to be lost (i.e., the ratio between the magnitude of the
computed value and the product of the norms is smaller than 2−ℓ/2 where ℓ
is the precision), the scalar product is computed exactly (with the integer
vectors and integer arithmetic) and then rounded to a closest double. As a
consequence, not significantly more than half the precision can be lost while
computing a scalar product. In NTL’s LLL (which implements the Schnorr-
Euchner variant), Victor Shoup replaced the 50% loss of precision test by a
stronger requirement of not losing more than 15% of the precision.

Secondly, if some coefficient µi, j is detected to be large (between Steps 3

and 4 of the algorithm of Figure 1.1), i.e., more than 2ℓ/2 where ℓ is the
precision, then another size-reduction will be executed after the current one.
This prevents incomplete size-reductions from occurring.

Finally, the algorithm does not tackle the error amplification due to the
Gram-Schmidt orthogonalisation process: one selects the double precision and
hopes for the best.

18 Damien Stehlé

Let us now discuss these heuristics. If the scalar products are detected to
be cancelling frequently, they will often be computed exactly with integer
arithmetic. In that situation, one should rather keep the Gram matrix and
update it. On the theoretical side, the Schnorr-Euchner strategy for scalar
products prevents one from getting a quadratic bit complexity. In practice, it
may slow down the computation significantly. In particular, this occurs when
two vectors have much different lengths and are nearly orthogonal. This may
happen quite frequently in some applications of LLL, one of them being Cop-
persmith’s method [14]. In the table of Figure 1.6, we compare NTL’s LLL_XD
with Magma’s LLL for input lattice bases that correspond to the use of Cop-
persmith’s method for the problem of factoring with high bits known, such as
described in [39], for a 1024bit RSA modulus p ·q and for different numbers
of most significant bits of p known. The experiments were performed with
NTL-5.4 and Magma-2.13, both using GNU MP for the integer arithmetic,
on a Pentium double-core 3.00 GHz. In both cases, the chosen parameters
were δ = 0.75 and η very close to 1/2, and the transformation matrix was
not computed. The timings are given in seconds. Here Magma’s LLL uses
the Gram matrix, whereas NTL’s LLL_XD recomputes the scalar products
from the basis vectors if a large cancellation is detected. In these examples,
NTL spends more than 60% of the time recomputing the scalar products
from the basis vectors.

Number of unknown bits of p 220 230 240 245
Dimension of the lattice 17 22 34 50

NTL’s LLL_XD 13.1 78.6 1180 13800
Time to compute the scalar products exactly 8.05 51.6 914 11000

Magma’s LLL 8.47 44.5 710 10000

Fig. 1.6 Comparison between NTL’s LLL_XD and Magma’s LLL for lattice bases aris-
ing in Coppersmith’s method applied to the problem of factoring with high bits
known.

Secondly, when the µi, j’s are small enough, they are never recomputed after
the size-reduction. This means that they are known with a possibly worse
accuracy. NTL’s LLL is very close to Schnorr-Euchner’s heuristic variant
but differs on this point: a routine similar to the lazy size-reduction of the
L2 algorithm is used. Shoup’s strategy consists in recomputing the µk,i’s as
long as one of them seems (we know them only approximately) larger than η ,
where η is extremely close to 1/2 (the actual initial value being 1/2+2−26),
and recall the size-reduction. When unexpectedly long lazy size-reductions
are encountered (the precise condition being more than 10 iterations), the
accuracy on the GSO coefficients is deemed very poor, and η is increased
slightly to take into account larger errors. This is a good strategy on the

1 Floating-Point LLL: Theoretical and Practical Aspects 19

short term since it may accept a larger but manageable error. However, on the
long term, weakening the size-reduction condition may worsen the numerical
behaviour (see Theorem 2 and Section 1.5) and thus even larger errors and
therefore stronger misbehaviours are likely to occur.

The fact that the error amplification is not dealt with would not be a
problem if there was a way to detect misbehaviours and to handle them.
This amplification may cause meaningless calculations: if the current GSO
coefficients are very badly approximated, then the performed Lovász tests are
meaningless with respect to the basis; it implies that the performed operations
may be irrelevant, and not reducing the basis at all; nothing ensures then that
the execution will terminate, since it is too different from the execution of the
rational LLL. In NTL’s LLL, one tries a given precision. If the execution seems
too long, the user has to stop it, and restart with some higher precision or
some more reliable variant, without knowing if the algorithm was misbehaving
(in which case increasing the precision may help), or just long to finish (in
which case increasing the precision will slow down the process even more).
The lack of error detection and interpretation can be quite annoying from the
user point of view: in NTL and LiDia, one may have to try several variants
before succeeding.

1.4.2 Implementing the L2 Algorithm

We now consider the task of implementing the L2 algorithm (described in
Figure 1.5). In practice, one should obviously try to use heuristic variants
before falling down to the guaranteed L2 algorithm. To do this, we allow
ourselves to weaken the L2 algorithm in two ways: we may try not to use the
Gram matrix but the basis matrix only, and we may try to use a floating-point
precision which is much lower than the provably sufficient one. We describe
here such a possible implementation.

We consider four layers for the underlying floating-point arithmetic:

• Double precision: it is extremely fast, but has a limited exponent (11 bits)
and a limited precision (53 bits). The exponent limit allows to convert
integers that have less than 1022bits (approximately half if one wants to
convert the Gram matrix as well). The limited precision is less annoying,
but prevents from considering high dimensions.

• Doubles with additional exponents (dpes): it is still quite fast, but the
precision limit remains.

• Heuristic extended precision: if more precision seems to be needed, then
one will have to use arbitrary precision floating-point numbers. According

to the analysis of the L2 algorithm, a precision ℓ ≈ log (1+η)2

δ−η2 · d always

suffices. Nevertheless, one is allowed to try a heuristic lower precision first.

20 Damien Stehlé

• Provable extended precision: use arbitrary precision floating-point num-

bers with a provably sufficient mantissa size of ℓ ≈ log (1+η)2

δ−η2 ·d bits.

In [33], Koy and Schnorr suggest to extend the 53 bit long double precision
to a precision of 106 bits. This is an interesting additional layer between the
double precision and the arbitrary precision, since it can be implemented in
an efficient way with a pair of doubles (see [31, Chapter 4.2.2, Exercise 21]).

One can also perform the computations with or without the Gram matrix.
If it is decided not to consider the Gram matrix, then the scalar products
are computed from floating-point approximations of the basis matrix entries.
As mentioned previously, cancellations may occur and the computed scalar
products may be completely incorrect. Such misbehaviours will have to be
detected and handled. If it is decided to consider the Gram matrix, then
there are more operations involving possibly long integers, since both the
Gram and basis matrices have to be updated. One may however forget about
the basis matrix during the execution of the algorithm by computing the
transformation instead, and applying the overall transformation to the initial
basis: it then has to be determined from the input which would be cheaper
between computing with the transformation matrix and computing with the
basis matrix.

So far, we have eight possibilities. A very frequent one is dpes without
the Gram matrix, which corresponds to NTL’s LLL_XD routine. This choice
can be sped up by factoring the exponents of the dpes: the idea is to have
one common exponent per vector, instead of n exponents. To do this, we
consider ei = ⌊1+ logmaxj≤n |bi[j]|⌋ together with the vector 2−ℓ⌊bi · 2ℓ−ei⌉.
More summing cancellations are likely to occur than without factoring the
exponents (since we may lose some information by doing so), but we obtain
a variant which is essentially as fast as using the processor double precision
only, while remaining usable for large matrix inputs.

1.4.3 A Thoughtful Wrapper

In a complete implementation of LLL, the choice of the variant and the
transitions between variants should be oblivious to the user. When calling
the LLL routine, the user expects the execution to terminate and to return a
guaranteed answer. At the time of the publishing of this survey, such a routine
is available only in Magma and fplll: using the LLL routines in the other
libraries requires, to some extent, some understanding of the algorithms used.
To obtain an LLL routine which is guaranteed but also makes use of heuristics,
misbehaviours should be detected and interpreted in such a way that the
cheapest variant that is likely to work is chosen. In the Schnorr-Euchner
algorithm, two such detections already exist: scalar product cancellations
and too large GSO coefficients.

1 Floating-Point LLL: Theoretical and Practical Aspects 21

When considering floating-point LLL algorithms, the main source of infi-
nite looping is the lazy size-reduction (Steps 4 to 8 in Figure 1.5). It is de-
tected by watching if the µi, j’s appearing are indeed decreasing at each loop
iteration of the size-reduction. If this stops being the case, then something
incorrect is happening. The other source of infinite looping is the succession
of incorrect Lovász tests. Fortunately, the proof of the LLL algorithm pro-
vides an upper bound to the number of Lovász tests performed during the
execution, as a function of the input basis. One can test whether the cur-
rent number of Lovász tests is higher than this upper bound. This is a crude
upper bound, but this malfunction seems to be much less frequent than the
incomplete size-reduction.

In Figure 1.7, we give an overview of the reduction strategy in the LLL rou-
tine of Magma. Each box corresponds to a floating-point LLL using the Gram
matrix or not, and using one of the afore-mentioned floating-point arith-
metics. When a variant fails, another is tried, following one of the arrows. In
addition to this graph, one should re-run a provable variant at the end of the
execution if it succeeded with a heuristic one, since the output might then be
incorrect. Other boxes and arrows than the ones displayed may be added. For
example, one may stop using the factored exponents variants if the entries
of the basis matrix start being small: in this case, the doubles without the
Gram matrix will be more efficient.

When a malfunction is detected (by a non-decrease of the GSO coefficients
during a size-reduction or by a too large number of Lovász tests), another
variant must be selected. Essentially two problems can occur: cancellations
of scalar products and lack of precision for the GSO calculations. The first
trouble may occur in any dimension, while the second one can only occur
when the dimension increases: around d = 30 in the worst case and around d =
180 on the average case, for close to optimal LLL parameters δ and η (for
a heuristic explanation of the last figure, see Section 1.5). As a consequence,
if a misbehaviour is detected in a low dimension or for a small LLL index κ
(the magnitude of the floating-point errors essentially depends on κ, see the
first-order analysis of the end of Section 1.3), cancellations in scalar products
are likely to be the cause of the problem and one should start using the
Gram matrix. Otherwise, it is likely that the mantissa size is not sufficient.
In Figure 1.7, this choice is represented by the arrows with the labels“Small κ”
and “Large κ”.

The labels “Large matrix entries” and “Small matrix entries” denote the
possibility of converting the Gram matrix coefficients to double precision
floating-point numbers: the top boxes do not involve the Gram matrices, but
those matrices may be needed later on if misbehaviours occur.

As mentioned earlier, in order to guarantee the correctness of the output,
one has to re-run the most reliable (and thus slower) variant on the output.
This can dominate the overall cost, especially if we are given an already
reduced basis. Villard [63] recently introduced a method to certify that a given

22 Damien Stehlé

Large matrix entries Small matrix entries

Without Gram
Factored exponents

Without Gram Without Gram

Without Gram

Doubles

Doubles

Small κ Small κLarge κLarge κ

DPE DPE
With Gram

With Gram

With Gram Heuristic arbitrary
precision

Guaranteed arbitrary precision

Fig. 1.7 Overview of the LLL reduction strategy in Magma.

basis is reduced. It will not always work, but if it does the result is guaranteed.
It can be made very efficient (for example by using double precision floating-
point numbers), and indeed much faster than using the provable precision in
the L2 algorithm. The general principle is as follows:

1. Compute an approximation R̄ of the R-factor R of the QR-factorisation of
the basis matrix.

2. Certify that the approximation R̄ is indeed close to R, by using a result
of [61] showing that it suffices to bound the spectral radius of some related
matrix.

3. Check the LLL conditions in a certified way from the certified approxima-
tion R̄ of R.

Another drawback of the general strategy is that it always goes towards a
more reliable reduction. It may be that such a reliable variant is needed at
some moment and becomes superfluous after some time within an execution:
generally speaking, the reduction of the basis improves the accuracy of the
computations and therefore some precautions may become superfluous. One
would thus have to devise heuristic tests to decide if one should change for
a more heuristic but faster variant. For example, suppose we did start using
the Gram matrix before scalar product cancellations were detected. The most
annoying scalar product cancellations occur when some vectors have very
unbalanced lengths and are at the same time fairly orthogonal. One can
check with the Gram matrix if it remains the case during the execution of the
chosen variant. Suppose now that we did increase the floating-point precision.
This was done in particular because the basis was not orthogonal enough. It
may happen that it becomes significantly more orthogonal, later within the

1 Floating-Point LLL: Theoretical and Practical Aspects 23

LLL-reduction: this can be detected by looking at the decrease of the ‖b∗
i ‖’s.

Finally, one may try to adapt the η and δ parameters in order to speed
up the LLL reduction. If one is only interested in a reduced basis without
paying attention to the LLL factors δ and η , then one should try the fastest
pair, while still requiring only double precision. The first requirement usually
implies a weakening of the pair (δ further away from 1 and η further away
from 1/2), whereas the second one involves a strengthening, so that there is
a trade-off to be determined. Furthermore, one may also try to change the
LLL factors during the LLL reduction itself, for example starting with weak
LLL factors to perform most of the reduction efficiently and strengthen the
factors afterwards to provide a basis of a better quality.

1.4.4 Adapting the Algorithm to Particular Inputs

It is possible to adapt the algorithm to particular lattice basis inputs that
occur frequently. We give here an example of a dedicated strategy called early
size-reduction, which was initially introduced by Allan Steel. The computa-
tional saving of this method can easily be explained for input lattice bases
of the following shape (they arise for example for detecting small integer
relations between numbers):















a1 a2 a3 . . . ad

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1















,

where the ai’s have large magnitudes. Let A = maxi |ai|. The idea of the early
size-reduction is as follows: when the LLL index κ reaches a new value for
the first time, instead of only size-reducing the vector bκ with respect to the
vectors b1, . . . ,bκ−1, reduce the bi’s with respect to the vectors b1, . . . ,bκ−1

for all i ≥ κ. The speed-up is higher for the longest bi’s, so that it may be
worth restricting the strategy to these ones.

One may think at first sight that this variant is going to be more expensive:
in fact, the overall size-reduction of any input vector bi will be much cheaper.
In the first situation, if the first i−1 vectors behave fairly randomly, we will
reduce in dimension i a vector of length ≈ A with respect to i−1 vectors of

length ≈ A
1

i−1 : if the first i−1 vectors behave randomly, the lengths of the
reduced vectors are all approximately the (i−1)-th root of the determinant of
the lattice they span, which is itself approximately A. In the second situation,
we will:

24 Damien Stehlé

• Reduce in dimension 3 a vector of length ≈ A with respect to 2 vectors of

length ≈ A
1
2 , when κ reaches 3 for the first time.

• Reduce in dimension 4 a vector of length ≈ A
1
2 with respect to 3 vectors

of length ≈ A
1
3 , when κ reaches 4 for the first time.

• . . .
• Reduce in dimension i a vector of length ≈A

1
i−2 with respect to i−1 vectors

of length ≈ A
1

i−1 , when κ reaches i for the first time.

We gain much because most of the time the number of non-zero coordinates
is less than i.

We now describe a very simple dedicated strategy for lattice bases occur-
ring in Coppersmith’s method for finding the small roots of a polynomial
modulo an integer [16]. We consider the univariate case for the sake of sim-
plicity. In this application of LLL, the input basis vectors are made of the
weighted coefficients of polynomials (Pi(x))i: the i-th basis vector is made of
the coordinates of Pi(xX), where X is the weight. This implies that the (j+1)-
th coordinates of all vectors are multiples of X j. Rather than reducing a basis
where the coordinates share large factors, one may consider the coordinates
of the Pi(x)’s themselves and modify the scalar product by giving a weight X j

to the (j + 1)-th coordinate. This decreases the size of the input basis with
a negligible overhead on the computation of the scalar products. If X is a
power of 2, then this overhead can be made extremely small.

1.5 Practical Observations on LLL

The LLL algorithm has been widely reported to perform much better in
practice than in theory. In this section, we describe some experiments whose
purpose is to measure this statement. These systematic observations were
made more tractable thanks to the faster and more reliable floating-point
LLLs based on L2. Conversely, they also help improving the codes:

• They provide heuristics on what to expect from the bases output by LLL.
For example, when LLL is needed for an application, these heuristic bounds
may be used rather than the provable ones, which may decrease the overall
cost. For example, in the cases of Coppersmith’s method (see [38]) and the
reconstruction of algebraic numbers (see [24]), the bases to be reduced will
have smaller bit-lengths.

• They explain precisely which steps are expensive during the execution, so
that the coder may be performing relevant code optimisations.

• They also help guessing which precision is likely to work in practice if no
scalar product cancellation occurs, which helps choosing a stronger variant
in case a malfunction is detected (see Subsection 1.4.3).

1 Floating-Point LLL: Theoretical and Practical Aspects 25

Overall, LLL performs quite well compared to the worst-case bounds with
respect to the quality of the output: the practical approximation factor be-
tween the first basis vector and a shortest lattice vector remains exponential,
but the involved constant is significantly smaller. Moreover, the floating-point
LLLs also seem to outperform the worst-case bounds with respect to their
running-time and the floating-point precision they require. We refer to [44]
for more details about the content of this section. Further and more rigorous
explanations of the observations can be found in [62].

1.5.1 The Lattice Bases Under Study

The behaviour of LLL can vary much with the type of lattice and the type
of input basis considered. For instance, if the lattice minimum is extremely
small compared to the other lattice minima (the k-th minimum being the
smallest R such that there are ≥ k linearly independent lattice vectors of
length ≤ R), the LLL algorithm will find a vector whose length reaches it
(which is of course not the case in general). If the basis to be reduced is or is
close to being LLL-reduced, the LLL algorithm will not behave generically.
For instance, if one selects vectors uniformly and independently in the d-
dimensional hypersphere, they are close to be reduced with high probability
(see [6, 7] and the survey [62] describing these results in a more general
probabilistic setup). We must therefore define precisely what we will consider
as input.

First of all, there exists a natural notion of random lattice. A full-rank
lattice (up to scaling) can be seen as an element of SLd(R)/SLd(Z). The

space SLd(R) inherits a Haar measure from R
d2

, which projects to a finite
measure when taking the quotient by SLd(Z) (see [3]). One can therefore de-
fine a probability measure on real-valued lattices. There are ways to generate
integer valued lattices so that they converge to the uniform distribution (with
respect to the Haar measure) when the integer parameters grow to infinity.
For example, Goldstein and Mayer [22] consider the following random family
of lattices: take a large prime p, choose d − 1 integers x2, . . . ,xd randomly,
independently and uniformly in [0, p−1], and consider the lattice spanned by
the columns of the following d ×d matrix:















p x2 x3 . . . xd

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 . . . 0 1















.

Amazingly, these lattice bases resemble those arising from knapsack-type
problems, the algebraic reconstruction problem (finding the minimal poly-

26 Damien Stehlé

nomial of an algebraic number given a complex approximation to it) and
the problem of detecting integer relations between real numbers [24]. We
define knapsack-type lattice bases as follows: take a bound B, choose d inte-
gers x1, . . . ,xd randomly, independently and uniformly in [0,B−1] and consider
the lattice spanned by the columns of the following (d +1)×d matrix:



















x1 x2 x3 . . . xd

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1



















.

In our experiments, we did not notice any difference of behaviour between
these random bases and the random bases of Goldstein and Mayer. Similarly,
removing the second row or adding another row of random numbers do not
seem to change the observations either.

We will also describe experiments based on what we call Ajtai-type bases.
Similar bases were introduced by Ajtai [4] to prove a lower-bound on the
quality of Schnorr’s block-type algorithms [49]. Select a parameter a. The
basis is given by the columns of the d × d upper-triangular matrix B such
that Bi,i = ⌊2(2d−i+1)a⌉ and the B j,i’s (for i > j) are randomly, independently
and uniformly chosen in Z∩ [−B j, j/2, . . . ,B j, j/2). The choice of the func-

tion 2(2d−i+1)a
is arbitrary: one may generalise this family by considering

a real-valued function f (i,d) and by taking Bi,i = ⌊ f (i,d)⌉. One advantage of

choosing f (i,d) = 2(2d−i+1)a
is that the ‖b∗

i ‖’s are decreasing very quickly, so
that the basis is far from being reduced.

1.5.2 The Output Quality

In low dimensions, it has been observed for quite a while that the LLL algo-
rithm computes vectors whose lengths are close (if not equal) to the lattice
minimum [45]. Hopefully for lattice-based cryptosystems, this does not re-
main the case when the dimension increases.

By experimenting, one can observe that the quality of the output of LLL
is similar for all input lattice bases generated from the different families men-
tioned above. For example, in Figure 1.8, each point corresponds to the fol-
lowing experiment: generate a random knapsack-type basis with B = 2100·d

and reduce it with the L2 algorithm, with (δ ,η) = (0.999,0.501); a point cor-

responds to the value of 1
d log2

‖b1‖
vol(L)1/d for the corresponding returned basis.

We conclude that experimentally, it seems that for a growing dimension d,
the first output vector is such that:

1 Floating-Point LLL: Theoretical and Practical Aspects 27

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 50 60 70 80 90 100 110 120 130

Fig. 1.8 Samples of 1
d log2

‖b1‖
vol(L)1/d for increasing dimensions d.

‖b1‖ ≈ cd ·vol(L)1/d ,

where c ≈ 20.03 ≈ 1.02. The exponential factor 1.02d remains tiny even in
moderate dimensions: e.g., (1.02)50 ≈ 2.7 and (1.02)100≈ 7.2.

One may explain this global phenomenon on the basis by looking at the
local two-dimensional bases, i.e., the pairs (b∗

i−1,b
∗
i + µi,i−1b∗

i−1). If we dis-
regard some first and last local pairs, then all the others seem to behave
quite similarly. In Figure 1.9, each point corresponds to a local pair (its co-
ordinates being

(

µi,i−1,‖b∗
i ‖/‖b∗

i−1‖
)

) of a basis that was reduced with fplll

with parameters δ = 0.999and η = 0.501, starting from a knapsack-type ba-
sis with B = 2100·d . These observations seem to stabilise between the dimen-
sions 40 and 50: it behaves differently in low dimensions (in particular, the

quantity 1
d log2

‖b1‖
vol(L)1/d is lower), and converges to it progressively when the

dimension increases. The mean value of the |µi,i−1|’s is close to 0.38, and the

mean value of
‖b∗i−1‖
‖b∗i ‖

is close to 1.04, which matches the above constant 1.02.

One may wonder if the geometry of“average”LLL-reduced bases is due to the
fact that most LLL-reduced bases are indeed of this shape, or if the LLL algo-
rithm biases the distribution. It is hard to decide between both possibilities:
one would like to generate randomly and uniformly LLL-reduced bases of
a given lattice, but it is unknown how to do it efficiently; for example, the
number of LLL-reduced bases of a given lattice grows far too quickly when
the dimension increases.

On the right hand-side of Figure 1.9, we did the same experiment except
that we replaced LLL by the Schnorr-Euchner deep insertion algorithm [53]
(see also [48]), which is a variant of the LLL algorithm where the Lovász
condition is changed into the stronger requirement:

28 Damien Stehlé

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Fig. 1.9 Distribution of the local bases after LLL (left) and deep-LLL (right).

∀κ ≤ d,∀i < κ, δ · ‖b∗
i ‖2 ≤

∥

∥

∥

∥

∥

b∗
κ +

κ−1

∑
j=i

µκ, jb∗
j

∥

∥

∥

∥

∥

2

.

The quality of the local bases improves by considering the deep insertion
algorithm, the constant 1.04 becoming ≈ 1.025, for close to optimal parame-
ters δ and η . These data match the observations of [9] on the output quality
improvement obtained by considering the deep insertion algorithm.

1.5.3 Practical Running-Time

The floating-point LLL algorithms seem to run much faster in practice than
the worst-case theoretical bounds. We argue below that these bounds should
be reached asymptotically for some families of inputs. We also heuristically
explain why they terminate significantly faster in practice. We will consider
bases for which n = Θ(d) = O(logB), so that the worst-case bound given in
Theorem 2 is simplified to O(d5 log2 B).

The worst-case analysis of the L2 algorithm given in Section 1.3 seems to
be tight for Ajtai-type random bases. More precisely: if a > 1 is fixed and d
grows to infinity, the average bit-complexity of the L2 algorithm given as
input a randomly and uniformly chosen d-dimensional Ajtai-type basis with
parameter a seems to be Θ(d5+2a) (in this context, we have logB ≈ da).

When L2 is run on these input bases, all the bounds of the heuristic analysis
but one seem tight, the exception being the O(d) bound on the size of the X ’s
(computed at Step 6 of the L2 algorithm, as described in Figure 1.5). Firstly,
the O(d2 logB) bound on the loop iterations seems to be tight in practice,
as suggested by Figure 1.10. The left side of the figure corresponds to Ajtai-
type random bases with a = 1.2: the points are the experimental data and the
continuous line is the gnuplot interpolation of the form f (d) = c1 ·d3.2. The
right side of the figure has been obtained similarly, for a = 1.5, and g(d) =

1 Floating-Point LLL: Theoretical and Practical Aspects 29

c2 ·d3.5. With Ajtai-type bases, size-reductions rarely contain more than two
iterations. For example, for d ≤ 75 and a = 1.5, less than 0.01% of the size-
reductions involve more than two iterations. The third bound of the heuristic
worst case analysis, i.e., the number of arithmetic operations within each loop
iteration of the lazy size-reduction, is also reached.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 10 20 30 40 50 60 70 80 90 100

f(x)
’ajtai1.2’

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 10 20 30 40 50 60 70 80 90 100

g(x)
’ajtai1.5’

Fig. 1.10 Number of loop iterations of L2 for Ajtai-type random bases.

These similarities between the worst and average cases do not go on for
the size of the integers involved in the arithmetic operations. The X ’s com-
puted during the size-reductions are most often shorter than a machine word,
which makes it difficult to observe the O(d) factor in the complexity bound
coming from their sizes. For an Ajtai-type basis with d ≤ 75 and a = 1.5, less
than 0.2% of the non-zero xi’s are longer than 64 bits. In the worst case [43]
and for close to optimal parameters δ and η , we have |xi| <∼ (3/2)κ−iM,
where M is the maximum of the |µκ, j|’s before the lazy size-reduction starts,
and κ is the current LLL index. In practice, M happens to be small most
of the time. It is essentially the length ratio between bκ and the smallest of
the bi’s for i ≤ κ: it is very rare that the lengths of the basis vectors differ
significantly in a non-negligible number of loop iterations during an execu-
tion of the LLL algorithm. It can be argued (see [44] for more details), using
the generic geometry of LLL-reduced bases described previously, that the
average situation is |X | ≈ (1.04)κ−iM if X is derived from µκ,i. This bound
remains exponential, but for a small M, the integer X becomes larger than
a machine word only in dimensions higher than several hundreds. We thus
expect the |X |’s to be of length <∼ (log21.04) ·d ≈ 0.057·d. For example, the
quantity (1.04)d becomes larger than 264 for d ≥ 1100. Since it is not known
how to reduce lattice bases which simultaneously have such huge dimensions
and reach the other bounds of the heuristic worst-case complexity analysis,
it is at the moment impossible to observe the asymptotic behaviour. The
practical running time is rather O(d4 log2 B).

30 Damien Stehlé

One can take advantage of the fact that most X ’s are small by optimising
the operation bκ :=bκ +Xbi for small X ’s. For example, one may consider the
cases X ∈ {−2,−1,1,2} separately. One may also use fast multiply-and-add
operations, as available in Pierrick Gaudry’s GNU MP patch for AMD 64
processors2.

Furthermore, in many situations, a much better running-time can be ob-
served. Of course, it highly depends on the input basis: if it is already re-
duced, it will terminate very quickly since there will be no more than d loop
iterations. But this can also happen for bases that are very far from being
reduced, such as knapsack-type bases. In this case, two facts improve the
running-time of LLL. Firstly, the number of loop iterations is only O(d logB)
instead of O(d2 logB) in the worst case: this provably provides a O(d4 log2 B)
worst-case complexity bound for these lattice bases (from Theorem 2). Sec-
ondly the basis matrix entries become very short much sooner than usual:
if the maximum value of the index κ so far is some j, one can heuristically

expect the entries of the vectors bi for i < j to be of length O
(

1
j−1 logB

)

(see [44] for more details). It is not known yet how to use this second remark
to decrease the complexity bound in a rigorous way, but one can heuristically
expect the following worst-case bound:

O

(

d logB ·d2 ·d · logB
d

)

= O(d3 log2 B).

Finally, by also considering the Θ(d) gain due to the fact that the size-
reduction X ’s do not blow up sufficiently for dimensions that can be handled
with today’s LLL codes, we obtain a O(d2 log2 B) bound in practice (for a
very large logB).

1.5.4 Numerical Behaviour

We now describe the practical error amplification of the GSO coefficients in
the L2 algorithm. To build the wrapper described in Subsection 1.4.3, it is
important to be able to guess up to which dimension a given precision will
work, for example the double precision, which is much faster than arbitrary
precision. Is it possible to predict the chance of success when using double
precision? We suppose here that we work with close to optimal parameters,
i.e., δ close to 1 and η close to 1/2, and with some precision ℓ lower than the
provably sufficient ≈ log2(3) ·d precision. We do not consider the cancellations
that may arise in the scalar product computations. Two problems may occur:
some lazy size-reduction or some consecutive Lovász tests may be looping
forever. In both situations, the misbehaviour is due to the incorrectness of

2 http://www.loria.fr/~gaudry/mpn_AMD64/

1 Floating-Point LLL: Theoretical and Practical Aspects 31

the involved approximate Gram-Schmidt coefficients. The output basis may
also be incorrect, but most often if something goes wrong, the execution loops
within a size-reduction.

In practice the algorithm seems to work correctly with a given precision
for much larger dimensions than guaranteed by the worst-case analysis: for
example, double precision seems sufficient most of the time up to dimen-
sion 170. This figure depends on the number of loop iterations performed:
if there are fewer loop iterations, one can expect fewer large floating-point
errors since there are fewer floating-point calculations. It can be argued that
the average required precision grows linearly with the dimension, but with a
constant factor significantly smaller than the worst-case one: for close to op-
timal LLL parameters and for most input lattice bases, L2 behaves correctly
with a precision of ≈ 0.25·d bits. The heuristic argument, like in the previous
subsection, relies on the generic geometry of LLL-reduced bases.

1.6 Open Problems

Though studied and used extensively since 25 years, many questions remain
open about how to implement the LLL algorithm as efficiently as possible and
about its practical behaviour. Some open problems have been suggested along
this survey. For example, Section 1.5 is essentially descriptive (though some
relations between the diverse observations are conjectured), and obtaining
proven precise results would help to understand more clearly what happens
in practice and how to take advantage of it: the survey [62] formalises more
precisely these questions and answers some of them. We suggest here a few
other lines of research related to the topics that have been presented.

Decreasing the required precision in floating-point LLLs. Since pro-
cessor double precision floating-point numbers are drastically faster than
other floating-point arithmetics (in particular arbitrary precision), it is tempt-
ing to extend the family of inputs for which double precision will suffice. One
way to do this, undertaken by Schnorr [33, 51, 48], is to use other orthog-
onalisation techniques like the Givens and Householder algorithms. These
algorithms compute the Q (as a product of matrices) and R factors of the
QR-factorisation of the basis matrix. The L2 algorithm relies on the Cholesky
factorisation (computing the R factor from the Gram matrix). Unfortunately,
the condition number of the Cholesky factorisation is essentially the square
of the condition number of the QR-factorisation (see [26] for more details).
With fully general input matrices, this heuristically means that one needs
approximately twice the precision with Cholesky’s factorisation than with
the QR-factorisation. Another significant advantage of relying on the QR-
factorisation rather than Cholesky’s is that the Gram matrix becomes su-
perfluous: a large ratio of the integer operations can thus be avoided, which
should provide better running-times, at least for input matrices having di-

32 Damien Stehlé

mensions that are small compared to the bit-sizes of their entries. Neverthe-
less, the Householder and Givens algorithms have at least two drawbacks.
Firstly, they require more floating-point operations: for d × d matrices, the
Householder algorithm requires 4

3d3+o(d3) floating-point operations whereas

the Cholesky algorithm requires only 1
3d3 + o(d3) floating-point operations

(see [26] for more details). And secondly, they suffer from potential cancella-
tions while computing scalar products (the first of the three drawbacks of the
naive floating-point LLL of Section 1.3). A reduction satisfying our definition
of LLL-reduction seems unreachable with these orthogonalisation techniques.
In [51], Schnorr suggests to replace the size-reduction condition |µi, j| ≤ η
by |µi, j| ≤ η + ε ‖b∗i ‖

‖b∗j‖
for some small ε > 0. So far, the best results in this

direction remain heuristic [51, 48]: making them fully provable would be a
significant achievement. It would prove that one can double the dimension
up to which the double precision rigorously suffices, and provide a sounder
insight on the possibilities of such orthogonalisation techniques in practice.

To decrease the precision even further, one could strengthen the orthog-
onality of the bases that we are reducing. To do this, deep insertions [53]
(see also Section 1.5) may be used, but this may become slow when the
dimension increases. Another alternative would be to perform a block-type
reduction (such as described in [49, 19]), for some small size of block: one per-
forms strong reductions such as Hermite-Korkine-Zolotarev (HKZ for short)
or dual-HKZ to make these small blocks extremely reduced and thus ex-
tremely orthogonal. Indeed, a small size of block is sufficient to strengthen
the overall orthogonality of the basis, and if the block-size is small enough,
the actual cost of HKZ-reducing for this block-size remains dominated by the

size-reduction step. Asymptotically, a block-size k =Θ
(

logd
log logd

)

would satisfy

these requirements. In practice, a block-size below 15 does not seem to create
a large running-time overhead.

Using floating-point arithmetic in other lattice algorithms. Replac-
ing the text-book rational arithmetic by an approximate floating-point arith-
metic can lead to drastic theoretical and practical speed-ups. The counter-
part is that the correctness proofs become more intricate. One may extend
the error analysis strategy of the L2 algorithm to derive complete (without
neglected error terms) explicit error bounds for modifications of the LLL al-
gorithm such as the algorithm of Schönhage [55], the Strong Segment-LLL
of Koy and Schnorr [32]. Adapting these algorithms to floating-point arith-
metic has already been considered [33, 51], but often the provably sufficient
precision is quite large in the worst case (linear in the bit-size of the ma-
trix entries), though better heuristic bounds outperform those of L2 (see [51]
and the survey [48] in this book). Developing high-level techniques to prove
such bounds would be helpful. Secondly, some lattice reduction algorithms
such as short lattice point enumeration, HKZ reduction and block-type re-
ductions [29, 18, 25, 53, 19] are usually implemented with floating-point num-
bers, though no analysis at all has been made. This simply means that the

1 Floating-Point LLL: Theoretical and Practical Aspects 33

outputs of these codes come with no correctness guarantee. This fact is par-
ticularly annoying, since checking the solutions of these problems is often very
hard. Amazingly, devising strong reduction algorithms based on floating-point
arithmetic may help decreasing the precision required for the LLL-reduction,
as mentioned above.

Decreasing the linear algebra cost. In all known LLL algorithms, the
embedding dimension n is a factor of the overall cost. This comes from the
fact that operations are performed on the basis vectors, which are made of n
coordinates. This may not seem natural, since one could reduce the underlying
quadratic form (i.e., LLL-reduce by using only the Gram matrix), store the
transformation matrix, and finally apply it to the initial basis. Then the cost
would be a smaller function of n. We describe here a possible way to reduce
a lattice basis whose embedding dimension n is much larger than its rank d.
It consists in applying a random projection (multiply the embedding space
by a random d ×n matrix), reducing the projected lattice, and applying the
obtained transformation to the initial basis: one then hopes that the obtained
lattice basis is somehow close to being reduced, with high probability. Results
in that direction are proved in [8]. This strategy can be seen as a dual of the
probabilistic technique recently introduced by Chen and Storjohann [13] to
decrease the number of input vectors when they are linearly dependent: their
technique decreases the number of input vectors while the one above decreases
the number of coordinates of the input vectors.

Decreasing the integer arithmetic cost. Finally, when the size of the
matrix entries is huge and the dimension is small, one would like to have
an algorithm with a sub-quadratic bit-complexity (with respect to the size
of the entries). Both Euclid’s and Gauss’ algorithms have quasi-linear vari-
ants (see [30, 54, 64, 56]): is it possible to devise a LLL algorithm which is
quasi-linear in any fixed dimension? Eisenbrand and Rote [17] answered the
question positively, but the cost of their algorithm is more than exponential
with respect to d. So we may restate the question as follows: is it possible to
devise a LLL algorithm whose bit-complexity grows quasi-linearly with the
size of the entries and polynomially with the dimension?

Acknowledgements. The author gratefully thanks John Cannon, Claude-
Pierre Jeannerod, Erich Kaltofen, Phong Nguyen, Andrew Odlyzko, Peter
Pearson, Claus Schnorr, Allan Steel, Brigitte Vallée and Gilles Villard for
helpful discussions and for pointing out errors on drafts of this work.

References

1. LIDIA 2.1.3. A C++ library for computational number theory. Available at
http://www.informatik.tu-darmstadt.de/TI/LiDIA/.

34 Damien Stehlé

2. IEEE Standards Committee 754. ANSI/IEEE standard 754-1985 for binary
floating-point arithmetic. Reprinted in SIGPLAN Notices, 22(2):9–25, 1987.

3. M. Ajtai. Random lattices and a conjectured 0-1 law about their polynomial time
computable properties. In Proceedings of the 2002 Symposium on Foundations
of Computer Science (FOCS 2002), pages 13–39. IEEE Computer Society Press,
2002.

4. M. Ajtai. The worst-case behavior of Schnorr’s algorithm approximating the
shortest nonzero vector in a lattice. In Proceedings of the 35th Symposium on
the Theory of Computing (STOC 2003), pages 396–406. ACM Press, 2003.

5. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case
equivalence. In Proceedings of the 29th Symposium on the Theory of Computing
(STOC 1997), pages 284–293. ACM Press, 1997.

6. A. Akhavi. Worst-case complexity of the optimal LLL algorithm. In Proceedings
of the 2000 Latin American Theoretical Informatics conference (LATIN 2000),
volume 1776 of Lecture Notes in Computer Science, pages 355–366. Springer-
Verlag, 2000.

7. A. Akhavi, M.-F. Marckert, and A. Rouault. On the reduction of a random basis.
In Proceedings of the 4th Workshop on Analytic Algorithmics and Combinatorics.
SIAM Publications, 2007.

8. A. Akhavi and D. Stehlé. Speeding-up lattice reduction with random projections
(extended abstract). In Proceedings of the 2008 Latin American Theoretical
Informatics conference (LATIN’08), volume 4957 of Lecture Notes in Computer
Science, pages 293–305. Springer-Verlag, 2008.

9. W. Backes and S. Wetzel. Heuristics on lattice reduction in practice. ACM
Journal of Experimental Algorithms, 7:1, 2002.

10. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than
N0.292. IEEE Transactions on Information Theory, 46(4):233–260, 2000.

11. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. Journal of Symbolic Computation, 24(3–4):235–265, 1997.

12. D. Cadé and D. Stehlé. fplll-2.0, a floating-point LLL implementation. Available
at http://perso.ens-lyon.fr/damien.stehle.

13. Z. Chen and A. Storjohann. A BLAS based C library for exact linear algebra on
integer matrices. In Proceedings of the 2005 International Symposium on Sym-
bolic and Algebraic Computation (ISSAC’02), pages 92–99. ACM Press, 2005.

14. D. Coppersmith. Finding a small root of a bivariate integer equation. In Pro-
ceedings of Eurocrypt 1996, volume 1070 of Lecture Notes in Computer Science,
pages 178–189. Springer-Verlag, 1996.

15. D. Coppersmith. Finding a small root of a univariate modular equation. In Pro-
ceedings of Eurocrypt 1996, volume 1070 of Lecture Notes in Computer Science,
pages 155–165. Springer-Verlag, 1996.

16. D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology, 10(4):233–260, 1997.

17. F. Eisenbrand and G. Rote. Fast reduction of ternary quadratic forms. In Pro-
ceedings of the 2001 Cryptography and Lattices Conference (CALC’01), volume
2146 of Lecture Notes in Computer Science, pages 32–44. Springer-Verlag, 2001.

18. U. Fincke and M. Pohst. A procedure for determining algebraic integers of given
norm. In Proceedings of EUROCAL, volume 162 of Lecture Notes in Computer
Science, pages 194–202, 1983.

19. N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s in-
equality. In Proceedings of the 40th Symposium on the Theory of Computing
(STOC’08). ACM, 2008.

20. J. von zur Gathen and J. Gerhardt. Modern Computer Algebra, 2nd edition.
Cambridge University Press, 2003.

1 Floating-Point LLL: Theoretical and Practical Aspects 35

21. O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice
reduction problems. In Proceedings of Crypto 1997, volume 1294 of Lecture Notes
in Computer Science, pages 112–131. Springer-Verlag, 1997.

22. D. Goldstein and A. Mayer. On the equidistribution of Hecke points. Forum
Mathematicum, 15:165–189, 2003.

23. T. Granlund. The GNU MP Bignum Library. Available at http://gmplib.org/.
24. G. Hanrot. LLL: a tool for effective diophantine approximation. This book.
25. B. Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced

lattice bases. Theoretical Computer Science, 41:125–139, 1985.
26. N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM Publications,

2002.
27. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: a ring based public key

cryptosystem. In Proceedings of the 3rd Algorithmic Number Theory Symposium
(ANTS III), volume 1423 of Lecture Notes in Computer Science, pages 267–288.
Springer-Verlag, 1998.

28. E. Kaltofen. On the complexity of finding short vectors in integer lattices. In
Proceedings of EUROCAL’83, volume 162 of Lecture Notes in Computer Science,
pages 236–244. Springer-Verlag, 1983.

29. R. Kannan. Improved algorithms for integer programming and related lattice
problems. In Proceedings of the 15th Symposium on the Theory of Computing
(STOC 1983), pages 99–108. ACM Press, 1983.

30. D. Knuth. The analysis of algorithms. In Actes du Congrès International des
Mathématiciens de 1970, volume 3, pages 269–274. Gauthiers-Villars, 1971.

31. D. Knuth. The Art of Computer Programming, vol. 2, third edition. Addison-
Wesley, 1997.

32. H. Koy and C. P. Schnorr. Segment LLL-reduction of lattice bases. In Proceedings
of the 2001 Cryptography and Lattices Conference (CALC’01), volume 2146 of
Lecture Notes in Computer Science, pages 67–80. Springer-Verlag, 2001.

33. H. Koy and C. P. Schnorr. Segment LLL-reduction of lattice bases with floating-
point orthogonalization. In Proceedings of the 2001 Cryptography and Lattices
Conference (CALC’01), volume 2146 of Lecture Notes in Computer Science,
pages 81–96. Springer-Verlag, 2001.

34. J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems.
Journal of the ACM, 32:229–246, 1985.

35. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261:513–534, 1982.

36. H. W. Lenstra, Jr. Flags and lattice basis reduction. In Proceedings of the third
European congress of mathematics, volume 1. Birkhäuser, 2001.

37. J. Martinet. Perfect Lattices in Euclidean Spaces. Springer-Verlag, 2002.
38. A. May. Using LLL-reduction for solving RSA and factorization problems: a

survey. This book.
39. A. May. New RSA Vulnerabilities Using Lattice Reduction Methods. PhD thesis,

University of Paderborn, 2003.
40. J.-M. Muller. Elementary Functions, Algorithms and Implementation.

Birkhäuser, 1997.
41. P. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. To

appear in SIAM J. Comput.
42. P. Nguyen and D. Stehlé. Low-dimensional lattice basis reduction revisited (ex-

tended abstract). In Proceedings of the 6th Algorithmic Number Theory Sym-
posium (ANTS VI), volume 3076 of Lecture Notes in Computer Science, pages
338–357. Springer-Verlag, 2004.

43. P. Nguyen and D. Stehlé. Floating-point LLL revisited. In Proceedings of Euro-
crypt 2005, volume 3494 of Lecture Notes in Computer Science, pages 215–233.
Springer-Verlag, 2005.

36 Damien Stehlé

44. P. Nguyen and D. Stehlé. LLL on the average. In Proceedings of the 7th Algo-
rithmic Number Theory Symposium (ANTS VII), volume 4076 of Lecture Notes
in Computer Science, pages 238–256. Springer-Verlag, 2006.

45. A. M. Odlyzko. The rise and fall of knapsack cryptosystems. In Proceedings
of Cryptology and Computational Number Theory, volume 42 of Proceedings of
Symposia in Applied Mathematics, pages 75–88. American Mathematical Society,
1989.

46. A. M. Odlyzko and H. J. J. te Riele. Disproof of Mertens conjecture. Journal für
die reine und angewandte Mathematik, 357:138–160, 1985.

47. The SPACES Project. MPFR, a LGPL-library for multiple-precision floating-
point computations with exact rounding. Available at http://www.mpfr.org/.

48. C. P. Schnorr. Hot topics of LLL and lattice reduction. This book.
49. C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms.

Theoretical Computer Science, 53:201–224, 1987.
50. C. P. Schnorr. A more efficient algorithm for lattice basis reduction. Journal of

Algorithms, 9(1):47–62, 1988.
51. C. P. Schnorr. Fast LLL-type lattice reduction. Information and Computation,

204:1–25, 2006.
52. C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algo-

rithms and solving subset sum problems. In Proceedings of the 1991 Symposium
on the Fundamentals of Computation Theory (FCT’91), volume 529 of Lecture
Notes in Computer Science, pages 68–85. Springer-Verlag, 1991.

53. C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems. Mathematics of Programming, 66:181–
199, 1994.

54. A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Infor-
matica, 1:139–144, 1971.

55. A. Schönhage. Factorization of univariate integer polynomials by Diophan-
tine approximation and improved basis reduction algorithm. In Proceedings of
the 1984 International Colloquium on Automata, Languages and Programming
(ICALP 1984), volume 172 of Lecture Notes in Computer Science, pages 436–
447. Springer-Verlag, 1984.

56. A. Schönhage. Fast reduction and composition of binary quadratic forms. In
Proceedings of the 1991 International Symposium on Symbolic and Algebraic
Computation (ISSAC’91), pages 128–133. ACM Press, 1991.

57. G. Schulz. Iterative berechnung der reziproken matrix. Zeitschrift für Ange-
wandte Mathematik und Mechanik, 13:57–59, 1933.

58. I. Semaev. A 3-dimensional lattice reduction algorithm. In Proceedings of the
2001 Cryptography and Lattices Conference (CALC’01), volume 2146 of Lecture
Notes in Computer Science, pages 181–193. Springer-Verlag, 2001.

59. V. Shoup. NTL, Number Theory C++ Library. Available at http://www.shoup.
net/ntl/.

60. A. Storjohann. Faster algorithms for integer lattice basis reduction. Technical
report, ETH Zürich, 1996.

61. J.-G. Sun. Componentwise perturbation bounds for some matrix decompositions.
BIT Numerical Mathematics, 31:341–352, 1992.

62. B. Vallée and A. Vera. Probabilistic analyses of lattice reduction algorithms. This
book.

63. G. Villard. Certification of the QR factor R, and of lattice basis reducedness.
In Proceedings of the 2007 International Symposium on Symbolic and Algebraic
Computation (ISSAC’07), pages 361–368. ACM Press, 2007.

64. C. K. Yap. Fast unimodular reduction: planar integer lattices. In Proceedings
of the 1992 Symposium on the Foundations of Computer Science (FOCS 1992),
pages 437–446. IEEE Computer Society Press, 1992.

