Skip to main content

LLL: A Tool for Effective Diophantine Approximation

  • Chapter
  • First Online:
The LLL Algorithm

Part of the book series: Information Security and Cryptography ((ISC))

Abstract

The purpose of this paper is to survey in a unified setting some of the results in diophantine approximation that the LLL algorithm can make effective in an efficient way. We mostly study the problems of finding good rational approximations to vectors of real and p-adic numbers, and of finding approximate linear relations between vectors of real numbers. We also discuss classical applications of those effective versions, among which Mertens’ conjecture and the effective solution of diophantine equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 513–534 (1982)

    Article  Google Scholar 

  2. Martinet, J.: Perfect Lattices in Euclidean Spaces. Springer (2002)

    Google Scholar 

  3. Cohn, H., Kumar, A.: The densest lattice in twenty-four dimensions. Electronic Research Announcements. Am. Math. Soc. 10, 58–67 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In: ACM Symposium on Theory of Computing, pp. 469–477. ACM (2007)

    Google Scholar 

  5. Ajtai, M., Kumar, R., Sivakumar, D.: A Sieve Algorithm for the Shortest Lattice Vector Problem. In: ACM Symposium on Theory of Computing, pp. 601–610. ACM (2001)

    Google Scholar 

  6. Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: Proceedings of the 15th Symposium on the Theory of Computing (STOC 1983), pp. 99–108. ACM Press (1983)

    Google Scholar 

  7. Schnorr, C.P.: A hierarchy of polynomial lattice basis reduction algorithms. Theor. Comput. Sci. 53, 201–224 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen, H.: A Course in Computational Algebraic Number Theory, 2nd edition. Springer (1995)

    Google Scholar 

  9. Pohst, M.: A modification of the LLL reduction algorithm. J. Symbolic Comput. 4(1), 123–127 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–13 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM Publications (1986). CBMS-NSF Regional Conference Series in Applied Mathematics

    Google Scholar 

  12. de Weger, B.: Algorithms for Diophantine equations, CWI-Tract, vol. 65. CWI (1989)

    Google Scholar 

  13. Nguyen, P., Stehlé, D.: LLL on the average. In: Proceedings of the 7th Algorithmic Number Theory Symposium (ANTS VII), Lecture Notes in Computer Science, vol. 4076, pp. 238–256. Springer (2006)

    Google Scholar 

  14. Hanrot, G., Stehlé, D.: Improved analysis of Kannan enumeration algorithm. In: Proceedings of Crypto’2007, Lecture Notes in Computer Science, vol. 4622, pp. 170–186. Springer (2007)

    Google Scholar 

  15. Lagarias, J.C.: The computational complexity of simultaneous diophantine approximation problems. In: Proceedings of the 1983 Symposium on the Foundations of Computer Science (FOCS 1983), pp. 32–39. IEEE Computer Society Press (1983)

    Google Scholar 

  16. Perron, O.: Kettenbrüche. Chelsea (1950)

    Google Scholar 

  17. Khinchin, A.Y.: Continued Fractions. Dover publications (1997)

    Google Scholar 

  18. Hardy, G., Wright, H.: An Introduction to the Theory of Numbers. Oxford University Press (1980)

    Google Scholar 

  19. Fürer, M.: Faster integer multiplication. In: ACM (ed.) Proceedings of STOC’ 2007, pp. 57–66 (2007)

    Google Scholar 

  20. von zur Gathen, J., Gerhardt, J.: Modern Computer Algebra, 2nd edition. Cambridge University Press (2003)

    Google Scholar 

  21. Gauß, C.: Disquisitiones Arithmeticae. Berlin (1801)

    Google Scholar 

  22. Odlyzko, A.M., te Riele, H.: Dispoof of Mertens conjecture. Journal für die reine und angewandte Mathematik 357, 138–160 (1985)

    Google Scholar 

  23. Mertens, F.: Über eine zahlentheorische Funktion. Sitzungberichte Akad. Wien 106, 761–830 (1897)

    MATH  Google Scholar 

  24. Kotnik, T., te Riele, H.: The Mertens conjecture revisited. In: F. Heß, S. Pauli, M. Pohst (eds.) Proceedings of ANTS-VII, LNCS, vol. 4076, pp. 156–167 (2006)

    Google Scholar 

  25. Nguyen, P., Stehlé, D.: Floating-point LLL revisited. In: Proceedings of Eurocrypt 2005, Lecture Notes in Computer Science, vol. 3494, pp. 215–233. Springer (2005)

    Google Scholar 

  26. Baker, A., Davenport, H.: The equations \(3{x}^{2} - 2 = {y}^{2}\) and \(8{x}^{2} - 7 = {z}^{2}\). Quart. J. Math. Oxford (2) 20, 129–137 (1969)

    Google Scholar 

  27. Cassels, J.W.S.: An introduction to diophantine approximation. Cambridge University Press (1957)

    Google Scholar 

  28. Ferguson, H., Bailey, D.: A Polynomial Time, Numerically Stable Integer Relation Algorithm (1991). Manuscript

    Google Scholar 

  29. Ferguson, H., Bailey, D., Arno, S.: Analysis of PSLQ, An Integer Relation Finding Algorithm. Math. Comp. 68, 351–369 (1999)

    MATH  MathSciNet  Google Scholar 

  30. Siegel, C.: Über einige Anwendungen diophantischer Approximationen. Abh. der Preuß Akad. der Wissenschaften. Phys-math. kl. 1 (1929) = Gesammelte Abhandlungen, I, 209–266

    Google Scholar 

  31. Schmidt, W.: Diophantine Approximation, Lecture Notes in Mathematics, vol. 785. Springer (1980)

    Google Scholar 

  32. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. In: Proceedings of Cryptology and Computational Number Theory, Proceedings of Symposia in Applied Mathematics, vol. 42, pp. 75–88. Am. Math. Soc. (1989)

    Google Scholar 

  33. van Hoeij, M.: Factoring polynomials and the knapsack problem. J. Number Th. 95, 167–189 (2002)

    Article  MATH  Google Scholar 

  34. Bilu, Y., Hanrot, G.: Solving Thue Equations of Large Degree. J. Number Th. 60, 373–392 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schnorr, C.P.: Factoring Integers and computing discrete logarithms via Diophantine approximation. Adv. Comput. Complex. 13, 171–182 (1993)

    MathSciNet  Google Scholar 

  36. Adleman, L.: Factoring and lattice reduction (1995). Manuscript

    Google Scholar 

  37. Dickman, K.: On the frequency of numbers containing primes of a certain relative magnitude. Ark. Math. Astr. Fys. 22, 1–14 (1930)

    Google Scholar 

  38. Vallée, B.: Provably fast integer factoring with quasi-uniform small quadratic residues. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, 15–17 May 1989, Seattle, Washington, USA, pp. 98–106 (1989)

    Google Scholar 

  39. Montgomery, P.: Square roots of products of algebraic numbers. In: W. Gautschi (ed.) Mathematics of Computation 1943–1993: a Half-Century of Computational Mathematics, Proceedings of Symposia in Applied Mathematics, pp. 567–571. Am. Math. Soc. (1994)

    Google Scholar 

  40. Nguyen, P.: A Montgomery-like square root for the number field sieve. In: J. Buhler (ed.) Algorithmic Number Theory, Third International Symposium, ANTS-III Portland, Oregon, USA, June 21, 1998 Proceedings, Lecture Notes in Computer Science, vol. 1423, pp. 151–168. Springer (1998)

    Google Scholar 

  41. Smart, N.: The algorithmic solution of Diophantine equations, London Mathematical Society Students Texts, vol. 41. Cambridge University Press (1998)

    Google Scholar 

  42. Baker, A.: Linear forms in the logarithms of algebraic numbers, I. Mathematika 13, 204–216 (1966)

    Article  Google Scholar 

  43. Matveev, E.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, ii. Izv. Ross. Akad. Nauk, Ser. Math. 64, 125–180 (2000)

    Google Scholar 

  44. de Weger, B.: Solving exponential diophantine equations using lattice basis reduction algorithms. J. Number Th. 26, 325–367 (1987)

    Article  MATH  Google Scholar 

  45. Oesterlé, J.: Nouvelles approches du théorème de Fermat. Astérisque 161/162, 165–186 (1988)

    Google Scholar 

  46. Stewart, C., Yu, K.: On the abc conjecture. II. Duke Math. J. 108, 169–181 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  47. Dokchitser, T.: LLL & ABC. J. Number Th. 107, 161–167 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. Thue, A.: Über annäherungswerte algebraischer Zahlen. J. Reine Angew. Math. 135, 284–305 (1909)

    MATH  Google Scholar 

  49. Baker, A.: Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms. Philos. Trans. Roy. Soc. London Ser. A 263, 173–191 (1968)

    MATH  Google Scholar 

  50. Tzanakis, N., de Weger, B.: On the Practical Solution of the Thue Equation. J. Number Th. 31, 99–132 (1989)

    Article  MATH  Google Scholar 

  51. Tzanakis, N., de Weger, B.: How to explicitly solve a Thue–Mahler Equation. Compositio Math. 84, 223–288 (1992)

    MATH  MathSciNet  Google Scholar 

  52. Cremona, J.: On the Computation of Mordell-Weil and 2-Selmer Groups of Elliptic Curves. Rocky Mountain J. Math. 32, 953–966 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  53. Gebel, J., Pethő, A., Zimmer, H.: Computing integral points on elliptic curves. Acta Arith. 68, 171–192 (1994)

    MATH  MathSciNet  Google Scholar 

  54. Stroeker, R., Tzanakis, N.: Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. Acta Arith. 67, 177–196 (1994)

    MATH  MathSciNet  Google Scholar 

  55. Gebel, J., Pethő, A., Zimmer, H.: On Mordell’s equation. Compositio Math. pp. 335–367 (1998)

    Google Scholar 

  56. Stroeker, R.J., Tzanakis, N.: Computing all integer solutions of a genus 1 equation. Math. Comput. 72, 1917–1933 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  57. Bilu, Y.: Solving superelliptic Diophantine Equations by Baker’s Method (1994). Preprint, Mathématiques stochastiques, université Bordeaux 2

    Google Scholar 

  58. Bilu, Y., Hanrot, G.: Solving Superelliptic Diophantine Equations by Baker’s Method. Compositio Math. 112, 273–312 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  59. de Weger, B.: Integral and S-integral solutions of a Weierstrass equation. J. Théor. Nombres Bordx. 9, 281–301 (1997)

    MATH  Google Scholar 

  60. Herrmann, E., Pethő, A.: S-integral points on elliptic curves – notes on a paper by B.M.M. de Weger. J. Théor. Nombres Bordx. 13, 443–451 (2001)

    Google Scholar 

  61. Bugeaud, Y.: Approximation by algebraic numbers, Cambridge Tracts in Mathematics, vol. 160. Cambridge University Press (2004)

    Google Scholar 

  62. Lefèvre, V., Muller, J.M., Tisserand, A.: Towards correctly rounded transcendentals. In: Proceedings of the 13th IEEE Symposium on Computer Arithmetic. IEEE Computer Society Press, Los Alamitos, CA, Asilomar, USA (1997). URL http://www.acsel-lab.com/arithmetic/arith13/papers/ARITH13{ _}Le%fevre.pdf

  63. Elkies, N.D.: Rational points near curves and small nonzero | x 3y 2 | via lattice reduction. In: Proceedings of the 4th Algorithmic Number Theory Symposium (ANTS IV), Lecture Notes in Computer Science, vol. 1838, pp. 33–63. Springer (2000)

    Google Scholar 

  64. Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Exponent RSA vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  65. Stehlé, D., Lefèvre, V., Zimmermann, P.: Searching worst cases of a one-variable function using lattice reduction. IEEE Trans. Comput. 54(3), 340–346 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Many thanks to Damien Stehlé for numerous discussions over the last few years about lattices, especially about fine behavior and advanced usage of LLL, and for many corrections, suggestions, and improvements to this survey; thanks also to Nicolas Brisebarre for many useful discussions and for his careful rereading of this survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Hanrot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hanrot, G. (2009). LLL: A Tool for Effective Diophantine Approximation. In: Nguyen, P., Vallée, B. (eds) The LLL Algorithm. Information Security and Cryptography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02295-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02295-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02294-4

  • Online ISBN: 978-3-642-02295-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics