Skip to main content

Random Ordinality Ensembles\(\colon\) A Novel Ensemble Method for Multi-valued Categorical Data

  • Conference paper
Multiple Classifier Systems (MCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5519))

Included in the following conference series:

Abstract

Data with multi-valued categorical attributes can cause major problems for decision trees. The high branching factor can lead to data fragmentation, where decisions have little or no statistical support. In this paper, we propose a new ensemble method, Random Ordinality Ensembles (ROE), that circumvents this problem, and provides significantly improved accuracies over other popular ensemble methods. We perform a random projection of the categorical data into a continuous space by imposing random ordinality on categorical attribute values. A decision tree that learns on this new continuous space is able to use binary splits, hence avoiding the data fragmentation problem. A majority-vote ensemble is then constructed with several trees, each learnt from a different continuous space. An empirical evaluation on 13 datasets shows this simple method to significantly outperform standard techniques such as Boosting and Random Forests. Theoretical study using an information gain framework is carried out to explain RO performance. Study shows that ROE is quite robust to data fragmentation problem and Random Ordinality (RO) trees are significantly smaller than trees generated using multi-way split.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpaydin, E.: Combined 5 x 2 cv f Test Comparing Supervised Classification Learning Algorithms. Neural Computation 11(8), 1885–1892 (1999)

    Article  Google Scholar 

  2. Bratko, I., Kononenko, I.: Learning Diagnostic Rules from Incomplete and Noisy Data, Seminar on AI Methods in Statistics, London (1986)

    Google Scholar 

  3. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  Google Scholar 

  4. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth International Group, CA (1985)

    MATH  Google Scholar 

  6. Dietterich, T.G.: Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation 10, 1895–1923 (1998)

    Article  Google Scholar 

  7. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Dietterich, T.G.: An Experimental Comparison of Three Methods for Constructing Ensembles of Decision trees: Bagging, Boosting, and randomization. Machine Learning 40(2), 1–22 (2000)

    Article  Google Scholar 

  9. Fayyad, U.M., Irani, K.B.: The Attribute Selection Problem in Decision Tree Generation. In: Proc. AAAI 1992. MIT Press, Cambridge (1992)

    Google Scholar 

  10. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Geurts, P., Ernst, D., Wehenkel, L.: Extremely Randomized Trees. Machine Learning 63(1), 3–42 (2006)

    Article  MATH  Google Scholar 

  12. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Hoboken (2004)

    Book  MATH  Google Scholar 

  13. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  14. Vilalta, R., Blix, G., Rendell, L.: Global Data Analysis and the Fragmentation Problem in Decision Tree Induction. In: Proceedings of the 9th European Conference on Machine Learning, pp. 312–328 (1997)

    Google Scholar 

  15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahmad, A., Brown, G. (2009). Random Ordinality Ensembles\(\colon\) A Novel Ensemble Method for Multi-valued Categorical Data. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2009. Lecture Notes in Computer Science, vol 5519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02326-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02326-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02325-5

  • Online ISBN: 978-3-642-02326-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics