Abstract
The use of multi-scale features is explored in the setting of supervised image segmentation by means of pixel classification. More specifically, we consider an interesting link between so-called scale selection and the maximum combination rule from pattern recognition. The parallel with scale selection is drawn further and a multi-scale segmentation method is introduced that relies on a per-scale classification followed by an over-scale fusion of these outcomes. A limited number of experiments is presented to provide some further understanding of the technique proposed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Koenderink, J.: The structure of images. Biological Cybernetics 50(5), 363–370 (1984)
Witkin, A.: Scale-space filtering: A new approach to multi-scale description. IEEE International Conference on Acoustics, Speech and Signal Processing 9 (1984)
Chen, C., Lee, J., Sun, Y.: Wavelet transformation for gray-level corner detection. Pattern Recognition 28(6), 853–861 (1995)
Deriche, R., Giraudon, G.: A computational approach for corner and vertex detection. International Journal of Computer Vision 10(2), 101–124 (1993)
ter Haar Romeny, B.: Front-end vision and multi-scale image analysis. Kluwer Academic, Dordrecht (2002)
Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. International Journal of Computer Vision 60(1), 63–86 (2004)
Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic, Dordrecht (1994)
Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, London (1999)
Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 79–116 (1998)
Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision 30(2), 117–154 (1998)
Forstner, W., Gulch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proceedings of the ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, pp. 281–305 (1987)
Rohr, K.: Recognizing corners by fitting parametric models. International Journal of Computer Vision 9(3), 213–230 (1992)
de Bruijne, M.: Shape particle guided tissue classification. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (2006)
Folkesson, J., Dam, E., Olsen, O., Pettersen, P., Christiansen, C.: Segmenting articular cartilage automatically using a voxel classification approach. IEEE Transactions on Medical Imaging 26(1), 106–115 (2007)
van Ginneken, B., Stegmann, M., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Medical Image Analysis 10(1), 19–40 (2006)
Loog, M., Ginneken, B.: Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification. IEEE Transactions on Medical Imaging 25(5), 602–611 (2006)
Kittler, J.: Combining classifiers: A theoretical framework. Pattern Analysis & Applications 1(1), 18–27 (1998)
Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Hoboken (2004)
Florack, L.: Image Structure. Kluwer Academic Publishers, Dordrecht (1997)
Koenderink, J., van Doorn, A.: Receptive field families. Biological Cybernetics 63(4), 291–297 (1990)
Florack, L., ter Haar Romeny, B., Koenderink, J., Viergever, M.: Scale and the differential structure of images. Image and Vision Computing 10(6), 376–388 (1992)
Florack, L., Kuijper, A.: The Topological Structure of Scale-Space Images. Journal of Mathematical Imaging and Vision 12(1), 65–79 (2000)
Kuijper, A., Florack, L.: The hierarchical structure of images. IEEE Transactions on Image Processing 12(9), 1067–1079 (2003)
Olsen, O., Florack, L., Kuijper, A. (eds.): DSSCV 2005. LNCS, vol. 3753. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Loog, M., Li, Y., Tax, D.M.J. (2009). Maximum Membership Scale Selection. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2009. Lecture Notes in Computer Science, vol 5519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02326-2_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-02326-2_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02325-5
Online ISBN: 978-3-642-02326-2
eBook Packages: Computer ScienceComputer Science (R0)