Abstract
At Crypto 2001, Gallant et al. showed how to exploit fast endomorphisms on some specific classes of elliptic curves to obtain fast scalar multiplication. The GLV method works by decomposing scalars into two small portions using multiplications, divisions, and rounding operations in the rationals. We present a new simple method based on the extended Euclidean algorithm that uses notably different operations than that of traditional decomposition. We obtain strict bounds on each component. Additionally, we examine the use of random decompositions, useful for key generation or cryptosystems requiring ephemeral keys. Specifically, we provide a complete description of the probability distribution of random decompositions and give bounds for each component in such a way that ensures a concrete level of entropy. This is the first analysis on distribution of random decompositions in GLV allowing the derivation of the entropy and thus an answer to the question first posed by Gallant in 1999.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)
Bellman, R., Straus, E.G.: Problems and Solutions: Solutions of Advanced Problems: 5125. Amer. Math. Monthly 71(7), 806–808 (1964)
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory 31(4), 469–472 (1985)
Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Advances in cryptology—EUROCRYPT 2009. LNCS, Springer, Heidelberg (2009) (to appear)
Gallant, R.: Faster elliptic curve cryptography using efficient endomorphisms. In: 3rd workshop on Elliptic Curve Cryptography—ECC 1999 (1999) (presentation slides)
SECG: Recommended elliptic curve domain parameters. Standards for Efficient Cryptography SEC 2 (September 20, 2000)
ANSI: Public key cryptography for the financial services industry: Key agreement and key transport using elliptical curve cryptography (2001) ANSI X9.63
Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptography. Springer, New York (2004)
Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)
Kim, D., Lim, S.: Integer decomposition for fast scalar multiplication on elliptic curves. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 13–20. Springer, Heidelberg (2003)
Sica, F., Ciet, M., Quisquater, J.J.: Analysis of the Gallant-Lambert-Vanstone method based on efficient endomorphisms: elliptic and hyperelliptic curves. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 21–36. Springer, Heidelberg (2003)
Park, Y.H., Jeong, S., Kim, C.H., Lim, J.: An alternate decomposition of an integer for faster point multiplication on certain elliptic curves. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 323–334. Springer, Heidelberg (2002)
Grabner, P.J., Heuberger, C., Prodinger, H.: Distribution results for low-weight binary representations for pairs of integers. Theoret. Comput. Sci. 319(1-3), 307–331 (2004)
Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S.: Accelerated verification of ECDSA signatures. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006)
Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algorithms, 2nd edn. Addison-Wesley, Reading (1981)
Järvinen, K., Forsten, J., Skyttä, J.: Efficient circuitry for computing τ-adic non-adjacent form. In: Proceedings of the 13th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2006, pp. 232–235. IEEE, Los Alamitos (2006)
Lange, T., Shparlinski, I.E.: Distribution of some sequences of points on elliptic curves. J. Math. Cryptol. 1(1), 1–11 (2007)
Cohen, H., Frey, G. (eds.): Handbook of elliptic and hyperelliptic curve cryptography. CRC Press, Boca Raton (2005)
IEEE: IEEE P1363 working group for public-key cryptography standards. meeting minutes (November 15, 2000), http://grouper.ieee.org/groups/1363/WorkingGroup/minutes/Nov00.txt
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brumley, B.B., Nyberg, K. (2009). On Modular Decomposition of Integers. In: Preneel, B. (eds) Progress in Cryptology – AFRICACRYPT 2009. AFRICACRYPT 2009. Lecture Notes in Computer Science, vol 5580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02384-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-02384-2_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02383-5
Online ISBN: 978-3-642-02384-2
eBook Packages: Computer ScienceComputer Science (R0)