Abstract
The McEliece cryptosystem is one of the oldest public-key cryptosystems ever designed. It is also the first public-key cryptosystem based on linear error-correcting codes. Its main advantage is to have very fast encryption and decryption functions. However it suffers from a major drawback. It requires a very large public key which makes it very difficult to use in many practical situations. A possible solution is to advantageously use quasi-cyclic codes because of their compact representation. On the other hand, for a fixed level of security, the use of optimal codes like Maximum Distance Separable ones allows to use smaller codes. The almost only known family of MDS codes with an efficient decoding algorithm is the class of Generalized Reed-Solomon (GRS) codes. However, it is well-known that GRS codes and quasi-cyclic codes do not represent secure solutions. In this paper we propose a new general method to reduce the public key size by constructing quasi-cyclic Alternant codes over a relatively small field like \({\mathbb{F}}_{2^8}\). We introduce a new method of hiding the structure of a quasi-cyclic GRS code. The idea is to start from a Reed-Solomon code in quasi-cyclic form defined over a large field. We then apply three transformations that preserve the quasi-cyclic feature. First, we randomly block shorten the RS code. Next, we transform it to get a Generalised Reed Solomon, and lastly we take the subfield subcode over a smaller field. We show that all existing structural attacks are infeasible. We also introduce a new NP-complete decision problem called quasi-cyclic syndrome decoding. This result suggests that decoding attack against our variant has little chance to be better than the general one against the classical McEliece cryptosystem. We propose a system with several sizes of parameters from 6,800 to 20,000 bits with a security ranging from 280 to 2120.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baldi, M., Chiaraluce, G.F.: Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes. In: IEEE International Symposium on Information Theory, Nice, France, March 2007, pp. 2591–2595 (2007)
Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24(3), 384–386 (1978)
Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the mceliece cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008)
Biswas, B., Sendrier, N.: Mceliece cryptosystem implementation: theory and practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 47–62. Springer, Heidelberg (2008)
Shokrollahi, A., Monico, C., Rosenthal, J.: Using low density parity check codes in the McEliece cryptosystem. In: IEEE International Symposium on Information Theory (ISIT 2000), Sorrento, Italy, p. 215 (2000)
Canteaut, A., Chabanne, H.: A further improvement of the work factor in an attempt at breaking McEliece’s cryptosystem. In: EUROCODE 1994, pp. 169–173. INRIA (1994)
Canteaut, A., Chabaud, F.: Improvements of the attacks on cryptosystems based on error-correcting codes. Technical Report 95–21, INRIA (1995)
Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Transactions on Information Theory 44(1), 367–378 (1998)
Canteaut, A., Sendrier, N.: Cryptanalysis of the original McEliece cryptosystem. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 187–199. Springer, Heidelberg (1998)
Cayrel, P.L., Otmani, A., Vergnaud, D.: On Kabatianskii-Krouk-Smeets Signatures. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 237–251. Springer, Heidelberg (2007)
Engelbert, D., Overbeck, R., Schmidt, A.: A summary of McEliece-type cryptosystems and their security. Journal of Mathematical Cryptology 1, 151–199 (2007)
Gaborit, P.: Shorter keys for code based cryptography. In: Proceedings of the 2005 International Workshop on Coding and Cryptography (WCC 2005), Bergen, Norway, pp. 81–91 (March 2005)
Gaborit, P., Girault, M.: Lightweight code-based authentication and signature. In: IEEE International Symposium on Information Theory (ISIT 2007), Nice, France, March 2007, pp. 191–195 (2007)
Gaborit, P., Lauradoux, C., Sendrier, N.: Synd: a fast code-based stream cipher with a security reduction. In: IEEE International Symposium on Information Theory (ISIT 2007), Nice, France, March 2007, pp. 186–190 (2007)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)
Kobara, K., Imai, H.: Semantically secure mceliece public-key cryptosystems-conversions for mceliece pkc. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 19–35. Springer, Heidelberg (2001)
Lee, P.J., Brickell, E.F.: An observation on the security of mcEliece’s public-key cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 275–280. Springer, Heidelberg (1988)
Leon, J.S.: A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Transactions on Information Theory 34(5), 1354–1359 (1988)
Li, Y.X., Deng, R.H., Wang, X.-M.: On the equivalence of McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Transactions on Information Theory 40(1), 271–273 (1994)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 5th edn. North-Holland, Amsterdam (1986)
McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–116. Jet Propulsion Lab. (1978); DSN Progress Report 44
Minder, L., Shokrollahi, A.: Cryptanalysis of the Sidelnikov cryptosystem. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 347–360. Springer, Heidelberg (2007)
Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems Control Inform. Theory 15(2), 159–166 (1986)
Otmani, A., Tillich, J.P., Dallot, L.: Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes (2008) (preprint)
Sendrier, N.: On the concatenated structure of a linear code. Appl. Algebra Eng. Commun. Comput. (AAECC) 9(3), 221–242 (1998)
Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs d’erreurs. Ph.D thesis, Université Paris 6, France (2002)
Sidelnikov, V.M.: A public-key cryptosystem based on binary Reed-Muller codes. Discrete Mathematics and Applications 4(3) (1994)
Sidelnikov, V.M., Shestakov, S.O.: On the insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Mathematics and Applications 1(4), 439–444 (1992)
Stern, J.: A method for finding codewords of small weight. In: Cohen, G.D., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989)
van Tilburg, J.: On the mceliece public-key cryptosystem. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 119–131. Springer, Heidelberg (1990)
Wieschebrink, C.: Two NP-complete problems in coding theory with an application in code based cryptography. In: IEEE International Symposium on Information Theory, July 2006, pp. 1733–1737 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Berger, T.P., Cayrel, PL., Gaborit, P., Otmani, A. (2009). Reducing Key Length of the McEliece Cryptosystem. In: Preneel, B. (eds) Progress in Cryptology – AFRICACRYPT 2009. AFRICACRYPT 2009. Lecture Notes in Computer Science, vol 5580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02384-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-02384-2_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02383-5
Online ISBN: 978-3-642-02384-2
eBook Packages: Computer ScienceComputer Science (R0)