Abstract
Step transition systems form a powerful model to describe the concurrent behaviors of distributed or parallel systems. They offer also a general framework for the study of marking graphs of Petri nets [22]. In this paper we investigate a natural labeled partial order semantics for step transition systems. As opposed to [19] we allow for autoconcurrency by considering steps that are multisets of actions. First we prove that the languages of step transition systems are precisely the width-bounded languages that are step-closed and quasi-consistent. Extending results from [19] we focus next on finite step transition systems and characterize their languages in the line of Buchi’s theorem. Our main result present six equivalent conditions in terms of regularity and MSO-definability for a set of labeled partial orders to be recognized by some finite step transition system.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnold, A.: An extension of the notion of traces and asynchronous automata. RAIRO. Theoretical Informatics and Applications 25, 355–393 (1991) (Gauthiers-Villars)
Bollig, B., Leucker, M.: Message-passing automata are expressively equivalent to EMSO logic. Theoretical Computer Science 358, 150–172 (2006)
Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)
Courcelle, B.: The monadic second-order logic of graphs X: Linear orderings. Theoretical Computer Science 160, 87–143 (1996)
Diekert, V., Métivier, Y.: Partial Commutation and Traces. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 457–534 (1997)
Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. of Math. 51(2), 161–166 (1950)
Doner, J.E.: Tree acceptors and some of their applications. J. Computer and Syst. Sciences 4, 406–451 (1970)
Droste, M., Kuske, D.: Recognizable and logically definable languages of infinite computations in concurrent automata. International Journal of Foundations of Computer Science 9, 295–313 (1998)
Droste, M., Gastin, P., Kuske, D.: Asynchronous cellular automata for pomsets. Theoretical Computer Science 247, 1–38 (2000)
Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-structures Part II: State spaces of concurrent systems. Acta Informatica 27, 343–368 (1990)
Fanchon, J., Morin, R.: Regular sets of pomsets with autoconcurrency. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 402–417. Springer, Heidelberg (2002)
Gischer, J.L.: The equational theory of pomsets. Theoretical Computer Science 61, 199–224 (1988)
Grabowski, J.: On partial languages. Fundamenta Informatica IV(2), 427–498 (1981)
Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.: A Theory of Regular MSC Languages. Information and Computation 202, 1–38 (2005)
Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: A Trace Semantics for Petri Nets. Information and Computation 117, 98–114 (1995)
Kiehn, A.: On the interrelationship between synchronised and non synchronised behaviour of Petri Nets. Journal of Information Processing and Cybernetics. EIK 24, 3–18 (1988)
Kuske, D.: Asynchronous cellular automata and asynchronous automata for pomsets. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 517–532. Springer, Heidelberg (1998)
Kuske, D.: Towards a language theory for infinite N-free pomsets. Theoretical Computer Science 299, 347–386 (2003)
Kuske, D., Morin, R.: Pomsets for local trace languages. Journal of Automata, Languages and Combinatorics 7, 187–224 (2002)
Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property. Theoretical Computer Science 237, 347–380 (2000)
Morin, R.: Recognizable Sets of Message Sequence Charts. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)
Mukund, M.: Petri Nets and Step Transition Systems. International Journal of Foundations of Computer Science 3, 443–478 (1992)
Pratt, V.: Modelling concurrency with partial orders. International Journal of Parallel Programming 15, 33–71 (1986)
Thatcher, W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Systems Theory 2, 57–81 (1968)
Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 389–455 (1997)
Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625. Springer, Heidelberg (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fanchon, J., Morin, R. (2009). Pomset Languages of Finite Step Transition Systems. In: Franceschinis, G., Wolf, K. (eds) Applications and Theory of Petri Nets. PETRI NETS 2009. Lecture Notes in Computer Science, vol 5606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02424-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-02424-5_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02423-8
Online ISBN: 978-3-642-02424-5
eBook Packages: Computer ScienceComputer Science (R0)