Skip to main content

Random Walks on Random Graphs

  • Conference paper
Nano-Net (NanoNet 2008)

Abstract

The aim of this article is to discuss some of the notions and applications of random walks on finite graphs, especially as they apply to random graphs. In this section we give some basic definitions, in Section 2 we review applications of random walks in computer science, and in Section 3 we focus on walks in random graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ajtai, M., Komlós, J., Szemerédi: Deterministic simulation in LOGSPACE. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 132–140 (1987)

    Google Scholar 

  2. Aldous, D.: The Random Walk Construction of Uniform Spanning Trees and Uniform Labelled Trees. SIAM Journal on Discrete Mathematics 3, 450–465 (1990)

    Article  Google Scholar 

  3. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs, http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html

  4. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. In: Proceedings of the 20th Annual IEEE Symposium on Foundations of Computer Science, pp. 218–223 (1979)

    Google Scholar 

  5. Alon, N.: Eigenvalues and expanders. Combinatorica 6, 83–96 (1986)

    Article  Google Scholar 

  6. Avin, C., Ercal, G.: On the cover time and mixing time of random geometric graphs. Theoretical Computer Science 380, 2–22 (2007)

    Article  Google Scholar 

  7. Alon, N., Avin, C., Kouchý, M., Kozma, G., Lotker, Z., Tuttle, M.: Many random walks are faster then one (to appear)

    Google Scholar 

  8. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  PubMed  Google Scholar 

  9. Bourassa, V., Holt, F.: SWAN: Small-world wide area networks. In: Proceedings of International Conference on Advances in Infrastructure (SSGRR 2003w), L’Aquila, Italy, paper # 64 (2003), http://www.panthesis.com/content/swan_white_paper.pdf

  10. Broder, A.Z.: Generating Random Spanning Trees. In: Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science, pp. 442–447 (1989)

    Google Scholar 

  11. Broder, A., Karlin, A., Raghavan, A., Upfal, E.: Trading space for time in undirected s-t connectivity. In: Proc. ACM Symp. Theory of Computing, pp. 543–549 (1989)

    Google Scholar 

  12. Bush, S.F., Li, Y.: Network Characteristics of Carbon nanotubes: A Graph Eigenspectrum Approach and Tool Using Mathematica, GE Technical Information Series Report: 2006GRC023

    Google Scholar 

  13. Cooper, C., Frieze, A.: Crawling on simple models of web-graphs. Internet Mathematics 1, 57–90 (2003)

    Article  Google Scholar 

  14. Cooper, C., Frieze, A.M.: The cover time of random regular graphs. SIAM Journal on Discrete Mathematics 18, 728–740 (2005)

    Article  Google Scholar 

  15. Cooper, C., Frieze, A.M.: The cover time of the preferential attachment graph. Journal of Combinatorial Theory Series B 97(2), 269–290 (2007)

    Article  Google Scholar 

  16. Cooper, C., Frieze, A.M.: The cover time of sparse random graphs. Random Structures and Algorithms 30, 1–16 (2007)

    Article  Google Scholar 

  17. Cooper, C., Frieze, A.M.: The cover time of the giant component of a random graph. Random Structures and Algoritms 32, 401–439 (2008)

    Article  Google Scholar 

  18. Cooper, C., Frieze, A.M.: The cover time of random digraphs. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 422–435. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Cooper, C., Frieze, A.M.: The cover time of random geometric graphs (to appear)

    Google Scholar 

  20. Cooper, C., Frieze, A., Radzik, T.: Multiple random walks in random regular graphs (to appear)

    Google Scholar 

  21. Cooper, C., Klasing, R., Radzik, T.: A randomized algorithm for the joining protocol in dynamic distributed networks. J. Theoretical Computer Science (to appear); also published as INRIA report RR-5376 and CNRS report I3S/RR-2004-39-FR

    Google Scholar 

  22. Doyle, P.G., Snell, J.: Random Walks and Electric Networks, Mathematical Association of America (1984), http://xxx.lanl.gov/abs/math.PR/0001057

  23. Dyer, M.E., Frieze, A.M.: Random walks, totally unimodular matrices and a randomised dual simplex algorithm. Mathematical Programming 64, 1–16 (1994)

    Article  Google Scholar 

  24. Feige, U.: A tight upper bound for the cover time of random walks on graphs. Random Structures and Algorithms 6, 51–54 (1995)

    Article  Google Scholar 

  25. Feige, U.: A tight lower bound for the cover time of random walks on graphs. Random Structures and Algorithms 6, 433–438 (1995)

    Article  Google Scholar 

  26. http://www.math.cmu.edu/~af1p/Mixingbook.pdf

  27. Frieze, A.M.: Edge disjoint paths in expander graphs. SIAM Journal on Computing 30, 1790–1801 (2001)

    Article  Google Scholar 

  28. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bulletin of the American Mathematical Society 43, 439–561 (2006)

    Article  Google Scholar 

  29. Jerrum, M.R.: A very simple algorithm for estimating the number of k-colourings of a low-degree graph. Random Structures and Algorithms 7(2), 157–165 (1995)

    Article  Google Scholar 

  30. Jerrum, M.R.: Counting, sampling and integrating: algorithms and complexity. Lectures in Mathematics–ETH Zürich, Birkhäuser (2003)

    Google Scholar 

  31. Jerrum, M., Sinclair, A.: The Markov chain Monte Carlo method: an approach to approximate counting and integration. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-hard Problems, pp. 482–520. PWS (1996)

    Google Scholar 

  32. Jonasson, J.: On the cover time of random walks on random graphs. Combinatorics, Probability and Computing 7, 265–279 (1998)

    Article  Google Scholar 

  33. Polya, G.: Über eine Aufgabe der Wahrscheinlichkeitstheorie betreffend die Irrfahrt im Strassennetz. Mathematische Annalen 84, 149–160 (1921)

    Article  Google Scholar 

  34. Reingold, O.: Undirected ST-Connectivity in Log-Space. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 376–385 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Cooper, C., Frieze, A. (2009). Random Walks on Random Graphs. In: Cheng, M. (eds) Nano-Net. NanoNet 2008. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02427-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02427-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02426-9

  • Online ISBN: 978-3-642-02427-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics