Skip to main content

Hitting Time Analysis for Stochastic Communication

  • Conference paper
Nano-Net (NanoNet 2008)

Abstract

This paper investigates the benefits of a recently proposed communication approach, namely on-chip stochastic communication, and proposes an analytical model for computing its mean hitting time. Towards this end, we model the stochastic communication as a branching process taking place on a finite mesh and estimate the mean number of communication rounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, et al.: Many Random Walks Are Faster Than One. In: 20th ACM SPAA, Germany (2008)

    Google Scholar 

  2. Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases (1975)

    Google Scholar 

  3. Bar-Yossef, Z., Gurevich, M.: Random sampling from a search engine’s index. In: WWW (2006)

    Google Scholar 

  4. Bogdan, P., Dumitras, T., Marculescu, R.: Stochastic Communication: A New Paradigm for Fault-Tolerant Networks-on-Chip. In: Hindawi VLSI-Design (Feburary 2007)

    Google Scholar 

  5. Broder, A., Karlin, A.R.: Bounds on Cover Time. J. of Theor. Prob. 2(1) (1989)

    Google Scholar 

  6. Bui, A., Sohier, D.: On Time Analysis of Random Walk Based Token Circulation Algorithms. In: Ramos, F.F., Larios Rosillo, V., Unger, H. (eds.) ISSADS 2005. LNCS, vol. 3563, pp. 63–71. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Chandra, et al.: The Electrical Resistance of a Graph Captures its Commute and Cover Times. In: ACM Symp. on Theor. of Computing (1989)

    Google Scholar 

  8. Constantinescu, C.: Trends and Challenges in VLSI Circuit Reliability. IEEE Micro (2003)

    Google Scholar 

  9. Cooper, C., Frieze, A., Radzik, T.: Multiple Random Walks in Random Regular Graphs. CMU Technical Report (May 2008)

    Google Scholar 

  10. Doyle, P.G., Snell, L.J.: Random Walks and Electrical Networks, M.A.A (1984)

    Google Scholar 

  11. Eugster, et al.: Epidemic information dissemination in distributed systems. Computer (2004)

    Google Scholar 

  12. Gkantsidis, A., et al.: Random walks in peer-to-peer networks. In: INFOCOM (2004)

    Google Scholar 

  13. Solari, H.G., Natiello, M.A.: Poisson approximation to density dependent stochastic processes. A numerical implementation and test. Växjö Univ. Press., Math. Modelling (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Bogdan, P., Marculescu, R. (2009). Hitting Time Analysis for Stochastic Communication. In: Cheng, M. (eds) Nano-Net. NanoNet 2008. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02427-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02427-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02426-9

  • Online ISBN: 978-3-642-02427-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics