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PREFACE

In this book we aim to present, in a unified framework, a broad spectrum
of mathematical theory that has grown in connection with the study of prob-
lems of optimization, equilibrium, control, and stability of linear and nonlinear
systems. The title Variational Analysis reflects this breadth.

For a long time, ‘variational’ problems have been identified mostly with
the ‘calculus of variations’. In that venerable subject, built around the min-
imization of integral functionals, constraints were relatively simple and much
of the focus was on infinite-dimensional function spaces. A major theme was
the exploration of variations around a point, within the bounds imposed by the
constraints, in order to help characterize solutions and portray them in terms
of ‘variational principles’. Notions of perturbation, approximation and even
generalized differentiability were extensively investigated. Variational theory
progressed also to the study of so-called stationary points, critical points, and
other indications of singularity that a point might have relative to its neighbors,
especially in association with existence theorems for differential equations.

With the advent of computers, there has been a tremendous expansion
of interest in new problem formulations that similarly demand such modes of
analysis but are far from being covered by classical concepts, not to speak
of classical results. For those problems, finite-dimensional spaces of arbitrary
dimensionality are important alongside of function spaces, and theoretical con-
cerns go hand in hand with the practical ones of mathematical modeling and
the design of numerical procedures.

It is time to free the term ‘variational’ from the limitations of its past and
to use it to encompass this now much larger area of modern mathematics. We
see ‘variations’ as referring not only to movement away from a given point along
rays or curves, and to the geometry of tangent and normal cones associated
with that, but also to the forms of perturbation and approximation that are
describable by set convergence, set-valued mappings and the like. Subgradients
and subderivatives of functions, convex and nonconvex, are crucial in analyzing
such ‘variations’, as are the manifestations of Lipschitzian continuity that serve
to quantify rates of change.

Our goal is to provide a systematic exposition of this broader subject as a
coherent branch of analysis that, in addition to being powerful for the problems
that have motivated it so far, can take its place now as a mathematical discipline
ready for new applications.

Rather than detailing all the different approaches that researchers have
been occupied with over the years in the search for the right ideas, we seek to
reduce the general theory to its key ingredients as now understood, so as to
make it accessible to a much wider circle of potential users. But within that
consolidation, we furnish a thorough and tightly coordinated exposition of facts
and concepts.

Several books have already dealt with major components of the subject.
Some have concentrated on convexity and kindred developments in realms of
nonconvexity. Others have concentrated on tangent vectors and subderiva-
tives more or less to the exclusion of normal vectors and subgradients, or vice
versa, or have focused on topological questions without getting into general-
ized differentiability. Here, by contrast, we cover set convergence and set-valued
mappings to a degree previously unavailable and integrate those notions with
both sides of variational geometry and subdifferential calculus. We furnish a
needed update in a field that has undergone many changes, even in outlook. In
addition, we include topics such as maximal monotone mappings, generalized
second derivatives, and measurable selections and integrands, which have not
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in the past received close attention in a text of this scope. (For lack of space,
we say little about the general theory of critical points, although we see that
as a close neighbor to variational analysis.)

Many parts of this book contain material that is new not only in its manner
of presentation but also in research. Each chapter provides motivations at
the beginning and throughout, and each concludes with extensive notes which
furnish credits and references together with historical perspective on how the
ideas gradually took shape. These notes also explain the reasons for some of
the decisions about notation and terminology that we felt were expedient in
streamlining the subject so as to prepare it for wider use.

Because of the large volume of material and the challenge of unifying it
properly, we had to draw the line somewhere. We chose to keep to finite-
dimensional spaces so as not to cloud the picture with the many complications
that a treatment of infinite-dimensional spaces would bring. Another reason for
this choice was the fact that many of the concepts have multiple interpretations
in the infinite-dimensional context, and more time may still be needed for them
to be sorted out. Significant progress continues, but even in finite-dimensional
spaces it is only now that the full picture is emerging with clarity. The abun-
dance of applications in finite-dimensional spaces makes it desirable to have an
exposition that lays out the most effective patterns in that domain, even if, in
some respects, such patterns are not able go further without modification.

We envision that this book will be useful to graduate students, researchers
and practitioners in a range of mathematical sciences, including some front-line
areas of engineering and statistics that draw on optimization. We have aimed
at making available a handy reference for numerous facts and ideas that cannot
be found elsewhere except in technical papers, where the lack of a coordinated
terminology and notation is currently a formidable barrier. At the same time,
we have attempted to write this book so that it is helpful to readers who want
to learn the field, or various aspects of it, step by step. We have provided many
figures and examples, along with exercises accompanied by guides.

We have divided each chapter into a main part followed by sections marked
by ∗, so as to signal to the reader a stage at which it would be reasonable, in a
first run, to skip ahead to the next chapter. The results placed in the ∗ sections
are often important as well as necessary for the completeness of the theory, but
they can suitably be addressed at a later time, once other developments begin
to draw on them.

For updates and errata, see http://math.ucdavis.edu/∼rjbw.
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