Skip to main content

Reoptimization of the Shortest Common Superstring Problem

(Extended Abstract)

  • Conference paper
Combinatorial Pattern Matching (CPM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5577))

Included in the following conference series:

Abstract

A reoptimization problem describes the following scenario: Given an instance of an optimization problem together with an optimal solution for it, we want to find a good solution for a locally modified instance.

In this paper, we deal with reoptimization variants of the shortest common superstring problem where the local modifications consist of adding or removing a single string. We show NP-hardness of these reoptimization problems and design several approximation algorithms for them.

This work was partially supported by SNF grant 200021-121745/1 and SBF grant C 06.0108 as part of the COST 293 (GRAAL) project funded by the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the traveling salesman problem. Networks 42(3), 154–159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the 0-1 knapsack problem. Technical Report 267, University of Brescia (2006)

    Google Scholar 

  3. Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.T.: Reoptimization of minimum and maximum traveling salesman’s tours. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 196–207. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bilò, D., Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Widmayer, P., Zych, A.: Reoptimization of Steiner trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 258–269. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Bilò, D., Widmayer, P., Zych, A.: Reoptimization of weighted graph and covering problems. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 201–213. Springer, Heidelberg (2009)

    Google Scholar 

  6. Böckenhauer, H.-J., Bongartz, D.: Algorithmic Aspects of Bioinformatics. Natural Computing Series. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  7. Böckenhauer, H.-J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G., Widmayer, P.: Reusing optimal TSP solutions for locally modified input instances (extended abstract). In: Proc. of the Fourth IFIP International Conference on Theoretical Computer Science (IFIP TCS 2006), vol. 209, pp. 251–270. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Rossmanith, P.: Reoptimization of Steiner trees: Changing the terminal set. Theoretical Computer Science (to appear)

    Google Scholar 

  9. Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Böckenhauer, H.-J., Komm, D.: Reoptimization of the metric deadline TSP. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 156–167. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Escoffier, B., Milanic, M., Paschos, V.T.: Simple and fast reoptimizations for the Steiner tree problem. Technical Report 2007-01, DIMACS (2007)

    Google Scholar 

  12. Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. Journal of Computer and System Sciences 20(1), 50–58 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schäffter, M.W.: Scheduling with forbidden sets. Discrete Applied Mathematics 72(1-2), 155–166 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Setubal, C., Meidanis, J.: Introduction to Computational Molecular Biology. Natural Computing Series. PWS Publishing Company (1997)

    Google Scholar 

  15. Sweedyk, Z.: A \(2{1\over2}\)-approximation algorithm for shortest superstring. SIAM Journal on Computing 29(3), 954–986 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tarhio, J., Ukkonen, E.: A greedy approximation algorithm for constructing shortest common superstrings. Theoretical Computer Science 57(1), 131–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Van Hoesel, S., Wagelmans, A.: On the complexity of postoptimality analysis of 0/1 programs. Discrete Applied Mathematics 91(1-3), 251–263 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vassilevska, V.: Explicit inapproximability bounds for the shortest superstring problem. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 793–800. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bilò, D. et al. (2009). Reoptimization of the Shortest Common Superstring Problem. In: Kucherov, G., Ukkonen, E. (eds) Combinatorial Pattern Matching. CPM 2009. Lecture Notes in Computer Science, vol 5577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02441-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02441-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02440-5

  • Online ISBN: 978-3-642-02441-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics