Abstract
We investigate the notion of ‘infinitary strong normalization’ (SN ∞ ), introduced in [6], the analogue of termination when rewriting infinite terms. A (possibly infinite) term is SN ∞ if along every rewrite sequence each fixed position is rewritten only finitely often. In [9], SN ∞ has been investigated as a system-wide property, i.e. SN ∞ for all terms of a given rewrite system. This global property frequently fails for trivial reasons. For example, in the presence of the collapsing rule tail(x:σ)→σ, the infinite term t =tail(0:t) rewrites to itself only. Moreover, in practice one usually is interested in SN ∞ of a certain set of initial terms. We give a complete characterization of this (more general) ‘local version’ of SN ∞ using interpretations into weakly monotone algebras (as employed in [9]). Actually, we strengthen this notion to continuous weakly monotone algebras (somewhat akin to [5]). We show that tree automata can be used as an automatable instance of our framework; an actual implementation is made available along with this paper.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)
Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007), http://www.grappa.univ-lille3.fr/tata
Endrullis, J., Grabmayer, C., Hendriks, D., Isihara, A., Klop, J.W.: Productivity of Stream Definitions. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 274–287. Springer, Heidelberg (2007)
Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Termination of Term Rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)
Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial Algebra Semantics and Continuous Algebras. JACM 24(1), 68–95 (1977)
Klop, J.W., de Vrijer, R.C.: Infinitary Normalization. In: Artemov, S., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.) We Will Show Them: Essays in Honour of Dov Gabbay, vol. 2, pp. 169–192. College Publ. (2005)
Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003)
Zantema, H.: Termination of Term Rewriting: Interpretation and Type Elimination. Journal of Symbolic Computation 17, 23–50 (1994)
Zantema, H.: Normalization of Infinite Terms. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 441–455. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Endrullis, J., Grabmayer, C., Hendriks, D., Klop, J.W., de Vrijer, R. (2009). Proving Infinitary Normalization. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds) Types for Proofs and Programs. TYPES 2008. Lecture Notes in Computer Science, vol 5497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02444-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-02444-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02443-6
Online ISBN: 978-3-642-02444-3
eBook Packages: Computer ScienceComputer Science (R0)