Skip to main content

Economic Evaluation and Statistical Methods for Detecting Hot Spots of Social and Housing Difficulties in Urban Policies

  • Conference paper
Computational Science and Its Applications – ICCSA 2009 (ICCSA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5592))

Included in the following conference series:

  • 2646 Accesses

Abstract

The paper shows a reasoning about how the new national policies on social housing can be implemented in connection with regional and local economic analyses. In this light the role of evaluation is examined, to show which kind of approach can be referred to each dimension, context and level. After a general introduction explaining the main aspects of the National Housing Plan, an example of integrate assessment of rent market and difficulty in housing access is shown, obtained by a scaling that profile some Italian metropolitan reality. All our examples are aiming to demonstrate that only an integrate, multilevel approach, supported by appropriate analysis can succeed in improving supply and quality of housing stock. After a general economic analysis the paper speaks about use statistical data to identify territorial zones (by the use of hot spots) characterized by the presence of urban poverty related to property ownership and the availability of residential services.

The contribution is the result of joint reflections by the authors, with the following contributions attributed to S. Montrone (chapter 1), to M. Bilancia (chapter 2), to P. Perchinunno (chapter 3), and to C. M. Torre (chapters 4 and 5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. EFILWC: First European Quality of Life Survey: Social dimensions of housing. European Foundation for the Improvement of Living and Working Conditions Luxembourg: Office for Official Publications of the European Communities (2006)

    Google Scholar 

  2. Guiso, L., Visco, I.: Saving an the accumulation of wealth. Essays on Italian Household, pp. 23–69. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  3. Cannari, L., Faiella, I.: House prices and housing wealth in Italy. Bank of Italy, Mimeo (2006)

    Google Scholar 

  4. Cheli, B., Lemmi, A.A.: Totally Fuzzy and Relative Approach to the Multidimensional Analysis of Poverty. Economic Notes 24(1), 115–134 (1995)

    Google Scholar 

  5. Lemmi, A., Pannuzi, N.: Fattori demografici della povertà, Continuità e discontinuità nei processi demografici. L’Italia nella transizione demografica. 4 Rubettino, Arcavacata di Rende, pp. 211–228 (1995)

    Google Scholar 

  6. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  7. Dubois, D., Prade, H.: Fuzzy sets and systems. Academic Press, London (1980)

    MATH  Google Scholar 

  8. Cerioli, A., Zani, S.: A Fuzzy Approach to the Measurement of Poverty. In: Dugum, C., Zenga, M. (eds.) Income and Wealth Distribution, inequality and Poverty. Springer, Berlin (1990)

    Google Scholar 

  9. Perchinunno, P., Rotondo, F., Torre, C.M.: A Multivariate Fuzzy Analysis for the Regeneration of Urban Poverty Areas. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 137–152. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Montrone, S., Perchinunno, P., Rotondo, F., Torre, C.M., Di Giuro, A.: Identification of Hot Spots of Social and Housing Difficulty in Urban Areas: Scan Statistic for Housing Market and Urban Planning Policies. In: Murgante, B., Borruso, G., Lapucci, A. (eds.) Geocomputation and Urban Planning. Studies in Computational Intelligence, vol. 176, pp. 57–78. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Kuldorff, M.: A spatial scan statistics. Communication in Statistics: Theory and Methods 26, 1481–1496 (1997)

    Article  Google Scholar 

  12. Takahashi, K., Tango, T.: A flexibly shaped spatial scan statistic for detecting clusters. International Journal of Health Geographics 4, 11–13 (2005)

    Article  Google Scholar 

  13. Patil, G.P., Taillie, C.: Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environmental and Ecological Statistics 11, 183–197 (2004)

    Article  Google Scholar 

  14. Aldstadt, J., Getis, A.: Using AMOEBA to create spatial weights matrix and identify spatial clusters. Geographical Analysis 38, 327–343 (2006)

    Article  Google Scholar 

  15. Montrone, S., Bilancia, M., Perchinunno, P., Torre, C.M.: Scan Statistics for the localization of hot spots of urban poverty. In: Conference Proceedings of the Regional Studies Association, Winter Conference, Londra, November 28, 2008, pp. 74–77 (2008); ISBN 978-1-1897721-34-6

    Google Scholar 

  16. Kulldorff, M.: SaTScanTM User Guide (August 26, 2006), http://www.satscan.org/

  17. Hendershott, P., Slemrod, J.: Taxes and the User Cost of Capital for Owner-Occupied Housing. AREUEA Journal 10(4), 375–393 (Winter, 1983)

    Google Scholar 

  18. Himmelberg, C., Mayer, C., Sinai, T.: Assessing High House Prices: Bubbles, Fundamentals and Misperceptions. Journal of Economic Perspectives 19(4), 67–92 (Fall, 2005)

    Google Scholar 

  19. Ayuso, J., Restoy, F.: House Prices and Rents: An Equilibrium Approach, working paper no.0304, Banco de España (2003)

    Google Scholar 

  20. Nakagami, Y., Pereira, A.M.: Housing Costs and Bequest Motives. Journal of Urban Economics 33(1), 68–75 (1993)

    Article  Google Scholar 

  21. Mayer, C.: Taxes, Income Distribution and the Real Estate Cycle: Why All Houses Don’t Appreciate at the Same Rate. New England Economic Review, pp. 39–50 (May/June 1993)

    Google Scholar 

  22. Case, K.E., Shiller, R.J.: The Behavior of Home Prices in Boom and Post-Boom Markets. New England Economic Review, pp. 29–46 (November 1988)

    Google Scholar 

  23. Stiglitz, J.E.: Symposium on Bubbles. Journal of Economic Perspectives 4(2), 13–18 (Spring, 1990)

    Google Scholar 

  24. Sutton, G.D.: Explaining changes in house prices. BIS Quarterly review (September 2002)

    Google Scholar 

  25. Haurin, D.R., Chung, E.C.: The Demand for Owner-Occupied Housing: Implications from Intertemporal Analysis. Journal of housing economics 7, 49–68 (1998)

    Article  Google Scholar 

  26. Stein, J.: Prices and Trading Volume in the Housing Market: A Model with Downpayment Effects. Quarterly Journal of Economics 110, 379–406 (1995)

    Article  Google Scholar 

  27. Harding, J.P., Rosenthal, S.S., Sirmans, C.F.: Depreciation of Housing Capital and the Gains from Homeownership, Working paper, Syracuse University (2004), http://faculty.maxwell.syr.edu/rosenthal

  28. Simonotti, M.: Metodi di valutazione immobilare. Dario Flaccovio, Palermo, Italy (2006)

    Google Scholar 

  29. Poterba, J.: Tax Subsidies to Owner-occupied Housing: An Asset Market Approach. Quarterly Journal of Economics 99, 729–752 (1984)

    Article  Google Scholar 

  30. Forte, C., de’ Rossi, B.: Principi di economia ed Estimo. Etas Libri, Roma, Italy (1974)

    Google Scholar 

  31. Fusco Girard, L.: Risorse architettoniche e culturali. Strategie di conservazione e metodi di valutazione. Angeli, Milano, Italy (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montrone, S., Bilancia, M., Perchinunno, P., Torre, C.M. (2009). Economic Evaluation and Statistical Methods for Detecting Hot Spots of Social and Housing Difficulties in Urban Policies. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2009. ICCSA 2009. Lecture Notes in Computer Science, vol 5592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02454-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02454-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02453-5

  • Online ISBN: 978-3-642-02454-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics