Abstract
The classical likelihood ratio spatial scan statistics has been widely used in spatial epidemiology for disease cluster detection. The question is whether the geographic incidence pattern is due to random fluctuations or the map reflects true underlying geographical variation due to etiologic risk factors. The hypothesis underlying the classic scan statistics assume that disease counts in different locations have independent Poisson distribution; unfortunately, outcomes in spatial units are often not independent of each other. Risk estimates of areas that are close to each other will tend to be positively correlated as they share a number of spatially varying characteristics. Ignoring the overdispersion caused by spatial autocorrelation leads to incorrect results. To overcome this difficulty, we propose a model-based approach adjusting for area-specific fixed-effects measuring potential effect modifiers, and for large-scale geographical variation of etiologic factors that vary continuously in space and are not expressly present within the model. We apply our methodology to the spatial distribution of lung cancer male mortality occurred in the province of Lecce, Italy, during the period 1992-2001.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Assuncao, R., Costa, M., Tavares, A., Ferreira, S.: Fast Detection of Arbitrarily Shaped Disease Clusters. Stat. Med. 25, 723–745 (2006)
Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical Modeling and Analysis of Spatial Data. Chapman and Hall/CRC, New York (2003)
Bayarri, M.J., Berger, J.O.: Quantifying Surprise in The Data and Model Verification. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics 6, Proceedings of the Sixth Valencia International Meeting, Oxford University Press, Oxford (1999)
Bernardinelli, L., Clayton, F., Montomoli, C.: Bayesian Estimates of Disease Map: how Important are Priors? Stat. Med. 14, 2411–2431
Bilancia, M., Fedespina, A.: Geographical Clustering of Lung Cancer in the Province of Lecce, Italy, 1992-2001 (submitted, 2009)
Cadum, E., Costa, G., Biggeri, A., Martuzzi, M.: Deprivation and Mortality: a Deprivation Index Suitable for Geographical Analysis of Inequalities. Epidemiol. Prev. 23(3), 175–187 (1999)
Carlin, B.P., Louis, T.A.: Bayes and Empirical Bayes Methods for Data Analysis, 2nd edn. Chapmann & Hall/CRC
Cislaghi, C.: Gis8 - Atlante Italiano di Mortalità 1981-2001 Versione 8.0 beta-test.ATI ESA (2005)
Held, L., Raßer, G.: Bayesian Detection of Clusters and Discontinuities in Disease Maps. Biometrics 56, 13–21
Istituto Nazionale di Statistica: Codici dei Comuni, delle Provincie e delle Regioni (2009), http://www.istat.it/strumenti/definizioni/comuni
Kelsall, J., Wakefield, J.: Discussion of Bayesian Methods for Spatially Correlated Disease and Exposure Data. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics 6, Proceedings of the Sixth Valencia International Meeting, Oxford University Press, Oxford (1998)
Klassen, A.C., Kulldorff, M., Curriero, F.: Geographical Clustering of Prostate Cancer Grade and Stage at Diagnosis, Before and After Adjustment for Risk Factors. Int. J. Health Geo. 4(1) (2005), doi:10.1186/1476-072X-4-1
Kulldorff, M., Nagarwalla, N.: Spatial Disease Clusters: Detection and Inference. Stat. Med. 14, 799–810 (1995)
Kulldorff, M.: A Spatial Scan Statistics. Commun. Statist. - Theory Meth. 26(6), 1481–1496 (1997)
Kulldorff, M.: Spatial Scan Statistics: Models, Calculations and Applications. In: Balakrishnan, N., Glaz, J. (eds.) Recent Advances on Scan Statistics and Applications, Birkhäuser, Boston, USA (1999)
Kulldorff, M., Song, C., Gregorio, D., Samociuk, H., DeChello, L.: Cancer Map Patterns: Are They Random or not? Am. J. Prev. Med. 30(2S), S37–S49 (2006)
Kulldorff, M., Tango, T., Park, P.J.: Power Comparisons for Disease Clustering Test. Comput. Stat. Data An. 42, 665–684 (2003)
Lawson, A., Denison, D.: Spatial Cluster Modeling. Chapmann & Hall/CRC, Boca Raton (2002)
Loh, J.M., Zhu, Z.: Accounting for Spatial Correlation in the Scan Statistics. Ann. Appl. Stat. 1(2), 560–584 (2007)
Möller, J., Waagepetersen, R.P.: Statistical Inference and Simulation for Spatial Point Processes. Chapmann & Hall/CRC (2004)
Naus, J.I.: The Distribution of The Size of Maximum Cluster of Points on the Line. J. Am. Stat. Ass. 60, 523–538
Osservatorio Epidemiologico Regione Puglia: Atlante delle Cause di Morte della Regione Puglia Anni 2000-2005 (2006), http://www.oerpuglia.it
Pascutto, C., Wakefield, J., Best, N.G., Richardson, S., Bernardinelli, S., Staines, A., Elliot, P.: Statistical Issues in the Analysis of Disease Mapping Data. Stat. Med. 19, 2493–2519 (2000)
Recuenco, S., Eidson, M., Kulldorff, M., Johnson, G., Cherry, B.: Spatial and Temporal Patterns of Enzootic Raccoon Rabies Adjusted for Multiple Covariates. Int. J. Health Geo. 6(14), doi:10.1186/1476-082X-6-14
Richardson, S., Thomson, A., Best, N., Elliot, P.: Interpreting Posterior Relative Risk Estimates in Disease Mapping Studies. Environ. Health Perspect. 112(9), 1016–1025 (2004)
Roalfe, A.K., Holder, R.L., Wilson, S.: Standardization of Rates Using logistic Regression: a Comparison With the Direct Method. Health Res. Serv. 8, 275, doi:10.1186/1472-6963-8-275
Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapmann & Hall/CRC (2005)
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A.: Bayesian Measures of Model Complexity and Fit (with Discussion). J. Roy. Statist. Soc. B 64(4), 583–639
Wakefield, J., Best, N.G., Waller, L.A.: Bayesian Approaches to Disease Mapping. In: Elliot, P., Wakefield, J., Best, N.G., Briggs, D.J. (eds.) Spatial Epidemiology: Methods and Application, Oxford University Press, Oxford (2000)
Wakefield, J.: Disease Mapping and Spatial regression With Count Data. Biostatist 8(2), 158-1-183 (2007)
Zhang, T., Lin, G.: Spatial Scan Statistics in Loglinear Models. Comput. Stat. Data An (in press, 2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bilancia, M., Montrone, S., Perchinunno, P. (2009). A Model-Based Scan Statistics for Detecting Geographical Clustering of Disease. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2009. ICCSA 2009. Lecture Notes in Computer Science, vol 5592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02454-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-02454-2_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02453-5
Online ISBN: 978-3-642-02454-2
eBook Packages: Computer ScienceComputer Science (R0)