Skip to main content

An Indoor Crowd Simulation Using a 2D-3D Hybrid Data Model

  • Conference paper
Computational Science and Its Applications – ICCSA 2009 (ICCSA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5592))

Included in the following conference series:

Abstract

Recent LBS-related technologies tend to extend to indoor spaces using localization sensors such as RFID. In order to implement real time evacuation applications, at least two problems must be resolved in advance; first, proper indoor data models and implementation methods that can accommodate evacuees positioning and routing computations should be available, second, evacuation simulations also need to be performed using the same indoor databases for consistent integration. However, none of these have been suggested explicitly as of now. Although some 3D modeling studies have dealt with topological structures, they are mainly focused on outer building volumes and it is difficult to incorporate such theoretical topology into indoor spaces due to complexity and computational limitations. In this study, we suggest an alternative method to build a 3D indoor model with less cost. It is a 2D-3D hybrid data model that combines the 2D topology constructed from CAD floor plans and the 3D visualization functionality. We show the process to build the proposed model in a spatial DBMS and visualize in 2D and 3D. Also, we illustrate a test CA(cellular automata)-based 3D crowd simulation using our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arens, C.A.: Maintaining reality: modelling 3D spatial objects in a GeoDBMS using a 3D primitive. M.Sc. Thesis, Delft University of Technology, The Netherlands (2003)

    Google Scholar 

  2. Blue, V.J., Adler, J.L.: Using cellular automata microsimulation to model pedestrian movements. In: Ceder, A. (ed.) Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Jerusalem, Israel, pp. 235–254 (1999)

    Google Scholar 

  3. Boston Geographic Information Systems, http://www.bostongis.com

  4. Chen, T.K., Abdul-Rahmana, A., Zlatanova, S.: 3D Spatial Operations for geo-DBMS: geometry vs. topology. In: International Archives of XXIth Congress of the ISPRS 2008, Part B2, Beijing (2008)

    Google Scholar 

  5. Ellul, C., Haklay, M.: Using a B-rep structure to query 9-intersection topological relationships in 3D GIS – reviewing the approach and improving performance. In: Lee, J., Zlatanova, S. (eds.) 3D Geo-information Sciences, pp. 15–31. Springer, Berlin (2008)

    Google Scholar 

  6. Gröger, G., Reuter, M., Plümer, L.: Representation of a 3-D city model in spatial object-relational databases. In: Proc. of the 20th Congress of International Society for Photogrammetry and Remote Sensing, Istanbul, Turkey (2004)

    Google Scholar 

  7. Hamacher, H.W., Tjandra, S.A.: Mathematical modelling of evacuation problems- a state of art. In: Schreckenberg, M., Sharma, S. (eds.) Pedestrian and Evacuation Dynamics, pp. 227–266. Springer, Berlin (2001)

    Google Scholar 

  8. Helbing, D., Molnár, P.: Self-organization phenomena in pedestrian crowds. In: Schweitzer, F. (ed.) Self-Organisation of Complex Structures: From Individual to Collective Dynamics, Gordon & Beach, London (1997)

    Google Scholar 

  9. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  10. Helbing, D., Farkas, I., Molnár, P., Vicsek, T.: Simulation of pedestrian crowds in normal and evacuation situations. In: Schreckenberg, M., Sharma, S. (eds.) Pedestrian and Evacuation Dynamics, pp. 21–58. Springer, Berlin (2001)

    Google Scholar 

  11. Henein, C.M., White, T.: Agent-based modelling of forces in crowds. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS, vol. 3415, pp. 173–184. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Henein, C., White, T.: Macroscopic effects of microscopic forces between agents in crowd models. Physica A 373, 694–712 (2007)

    Article  Google Scholar 

  13. Hillier, B.: Space is the Machine. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  14. Hillier, B., Hanson, J.: The Social Logic of Space. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  15. Jiang, B., Claramunt, C., Batty, M.: Geometric accessibility and geographic information: extending desktop GIS to space syntax, Computers. Environment and Urban Systems 23, 127–146 (1999)

    Article  Google Scholar 

  16. Kim, H., Jun, C.: Indoor spatial analysis using Space syntax. In: International Archives of XXIth Congress of the ISPRS 2008, Beijing, WG II/1, pp. 1065–1070 (2008)

    Google Scholar 

  17. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionicsinspired cellular automaton model for pedestrian dynamics. Physica A 312, 260–276 (2002)

    Article  MATH  Google Scholar 

  18. Klupfel, H., Konig, T., Wahle, J., Schreckenberg, M.: Microscopic simulation of evacuation processes on passenger ships. In: Proceedings of Fourth International Conference on Cellular Automata for Research and Industry, Karlsruhe, Germany (October 2002)

    Google Scholar 

  19. Kolbe, T.H.: Representing and exchanging 3D city models with CityGML. In: Lee, J., Zlatanova, S. (eds.) 3D Geo-information Sciences, pp. 15–31. Springer, Berlin (2008)

    Google Scholar 

  20. OGC (Open Geospatial Consortium), http://www.opengeospatial.org

  21. Park, I., Kim, H., Jun, C.: 2D-3D Hybrid Data Modeling for Fire Evacuation Simulation. In: ESRI international User Conference 2007, San Diego (2007), http://gis.esri.com/library/userconf/proc07/papers/papers/pap_1731.pdf

  22. Penn, A., Hillier, B., Banister, D., Xu, J.: Configurational modelling of urban movement networks. Environment and Planning B-Planning & Design 25(1), 59–84 (1998)

    Article  Google Scholar 

  23. PostgreSQL, http://www.postgresql.org

  24. SharpMap, http://www.codeplex.com/SharpMap

  25. Schadschneider, A.: Cellular automaton approach to pedestrian dynamics - Theory. In: Schreckenberg, M., Sharma, S. (eds.) Pedestrian and Evacuation Dynamics, pp. 75–86. Springer, Berlin (2001)

    Google Scholar 

  26. Schreckenberg, M., Sharma, S.D. (eds.): Pedestrian and Evacuation Dynamics. Springer, Berlin (2001)

    MATH  Google Scholar 

  27. Stadler, A., Kolbe, T.H.: Spatio-semantic coherence in the integration of 3D city models. In: Proceedings of 5th International ISPRS Symposium on Spatial Data Quality ISSDQ 2007 in Enschede (2007)

    Google Scholar 

  28. Stewart, J.Q., Warntz, W.: Physics of population distribution. Journal of Regional Science 1, 99–123 (1985)

    Article  Google Scholar 

  29. Stoter, J.E., van Oosterom, P.J.M.: Incorporating 3D geo-objects into a 2D geo-DBMS. In: ACSM-ASPRS 2002 (2002)

    Google Scholar 

  30. Stoter, J.E., Zlatanova, S.: Visualising and editing of 3D objects organised in a DBMS. In: Proceedings EUROSDR Workshop: Rendering and Visualisation, pp. 14–29 (2003)

    Google Scholar 

  31. Zlatanova, S.: 3D GIS for urban development, PhD thesis, Institute for Computer Graphics and Vision, Graz University of Technology, Austria, ITC, the Netherlands (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jun, C., Kim, H. (2009). An Indoor Crowd Simulation Using a 2D-3D Hybrid Data Model. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2009. ICCSA 2009. Lecture Notes in Computer Science, vol 5592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02454-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02454-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02453-5

  • Online ISBN: 978-3-642-02454-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics