Skip to main content

A Grid Implementation of Direct Quantum Calculations of Rate Coefficients

  • Conference paper
Computational Science and Its Applications – ICCSA 2009 (ICCSA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5593))

Included in the following conference series:

Abstract

A detailed description of the grid implementation on the production computing grid of EGEE of FLUSS and MCTDH quantum codes performing a calculation of atom-diatom reaction rate coefficients is given. An application to the N + N2 reaction for which a massive computational campaign has been performed is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Skouteris, D., Pacifici, L., Laganà, A.: A Time Dependent Study of the Nitrogen. Atom Nitrogen Molecule Reaction. Mol. Phys. 102, 2237–2248 (2004)

    Google Scholar 

  2. Skouteris, D., Castillo, J.F., Manolopulos, D.E.: ABC: a quantum reactive scattering program. Comp. Phys. Comm. 133, 128–135 (2000)

    Article  MATH  Google Scholar 

  3. Armenise, I., Capitelli, M., Celiberto, R., Colonna, G., Gorse, C., Laganà, A.: The effect of N+N2 Collisions on the Non-Equilibrium Vibrational Distributions of Nitrogen under Reentry Conditions. Chem. Phys. Letters 227, 157–163 (1994)

    Article  Google Scholar 

  4. Angelucci, M., Costantini, A., Crocchianti, S., Laganà, A., Vecchiocattivi, M.: Uno studio sull’ Ozono. Micron, rivista di informazione ARPA Umbria 9, 34–39 (2008)

    Google Scholar 

  5. Costantini, A.: Grid Enabled Distributed Computing: from Molecular Dynamics to Multiscale Simulations. PhD Thesis, University of Perugia, Perugia (I) (2009)

    Google Scholar 

  6. Carvalho, M.: Clean Combustion Technologies. CRC Press, Boca Raton (1999)

    Google Scholar 

  7. Porrini, M.: A Molecular Dynamics Study of Lamellar Membranes Microsolvated Benzene for a Grid Approach. PhD Thesis, University of Perugia, Perugia (I) (2006)

    Google Scholar 

  8. Arteconi, L.: Molecular Dynamics Modeling of Micropores of cellular membranes. PhD Thesis, University of Perugia, Perugia (I) (2008)

    Google Scholar 

  9. Bowman, J.M.: Lecture Notes in Chemistry 75, 101–114 (2000)

    Article  Google Scholar 

  10. Beck, M., Jäkle, A., Worth, G., Meyer, H.D.: The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324, 1–5 (2000)

    Article  Google Scholar 

  11. Meyer, H., Manthe, U., Cederbaum, L.: The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165, 73–78 (1990)

    Article  Google Scholar 

  12. Manthe, U., Meyer, H.D., Cederbaum, L.S.: Wave-packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl. J. Chem. Phys. 97, 3199–3213 (1992)

    Article  Google Scholar 

  13. Enabling Grids for E-Science in Europe (EGEE), project funded by the European Union, http://compchem.unipg.it/

  14. Laganà, A., Riganelli, A., Gervasi, O.: On the Structuring of the Computational Chemistry Virtual Organization COMPCHEM. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 665–674. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Miller, W.H.: Quantum Mechanical Transition State Theory and a New Semiclassical Model for Reaction Rate Constants. J. Chem. Phys. 61, 1823–1834 (1974)

    Article  Google Scholar 

  16. Yamamoto, T.: Quantum statistical mechanical theory of the rate of exchange chemical reactions in the gas phase. J. Chem. Phys. 33, 281–289 (1960)

    Article  MathSciNet  Google Scholar 

  17. Miller, W.H.: “Direct” and “Correct” Calculation of Microcanonical and Canonical Rate Constants for Chemical Reactions J. Phys. Chem. A 102, 793–806 (1998)

    Article  Google Scholar 

  18. Huarte-Larrañaga, F., Manthe, U.: Thermal Rate Constants for Polyatomic Reactions: First Principles Quantum Theory. Z. Phys. Chem. 221, 171–213 (2007)

    Article  Google Scholar 

  19. Park, T.J., Light, J.C.: Quantum flux operators and thermal rate-constant: Collinear H+H2. J. Chem. Phys. 88, 4897–4912 (1988)

    Article  Google Scholar 

  20. Matzkies, F., Manthe, U.: Accurate reaction rate calculations including internal and rotational motion: A statistical multi-configurational time-dependent Hartree approach. J. Chem. Phys. 110, 88–96 (1999)

    Article  Google Scholar 

  21. Manthe, U., Matzkies, F.: Iterative diagonalization within the multi-configurational time-dependent Hartree approach: calculation of vibrationally excited states and reaction rates. Chem. Phys. Letters 252, 71–76 (1996)

    Article  Google Scholar 

  22. Matzkies, F., Manthe, U.: Combined iterative diagonalization and statistical sampling in accurate reaction rate calculations: Rotational effects in O + HCl → OH + Cl. J. Chem. Phys. 112, 130–136 (2000)

    Article  Google Scholar 

  23. Manthe, U., Matzkies, F.: Rotational effects in the H2 + OH → H + H2O reaction rate: Full-dimensional close-coupling results. J. Chem. Phys. 113, 5725–5731 (2000)

    Article  Google Scholar 

  24. Huarte-Larrañaga, F., Manthe, U.: Quantum mechanical calculation of the OH + HCl → H2O + Cl reaction rate: Full-dimensional accurate, centrifugal sudden, and J-shifting results. J. Chem. Phys. 118, 8261–8267 (2003)

    Article  Google Scholar 

  25. Huarte-Larrañaga, F., Manthe, U.: Vibrational excitation in the transition state: The CH4 + H → CH3 + H2 reaction rate constant in an extended temperature interval. J. Chem. Phys. 116, 2863–2869 (2002)

    Article  Google Scholar 

  26. Garcia, E., Laganà, A.: Effect of Varying the Transition State Geometry on N + N2 Vibrational Deexcitation Rate Coefficients. J. Phys. Chem. A 101, 4734–4740 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costantini, A., Faginas Lago, N., Laganà, A., Huarte-Larrañaga, F. (2009). A Grid Implementation of Direct Quantum Calculations of Rate Coefficients. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2009. ICCSA 2009. Lecture Notes in Computer Science, vol 5593. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02457-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02457-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02456-6

  • Online ISBN: 978-3-642-02457-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics