Skip to main content

Asymptotic Behavior of Ruin Probability in Insurance Risk Model with Large Claims

  • Conference paper
Complex Sciences (Complex 2009)

Included in the following conference series:

  • 1127 Accesses

Abstract

For the renewal risk model with subexponential claim sizes, we established for the finite time ruin probability a lower asymptotic estimate as initial surplus increases, subject to the demand that it should hold uniformly over all time horizons in an infinite interval. In the case of Poisson model, we also obtained the upper asymptotic formula so that an equivalent formula was derived. These extended a recent work partly on the topic from the case of Pareto-type claim sizes to the case of subexponential claim sizes and, simplified the proof of lower bound in Leipus and Siaulys ([9]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asmussen, S.: Approximations for the probability of ruin within finite time. Scand. Actuar. J. (1), 31–57 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asmussen, S.: Ruin probabilities. World Scientific Publishing Co., Inc., River Edge (2000)

    Book  MATH  Google Scholar 

  3. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling extremal events for insurance and finance. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  4. Embrechts, P., Veraverbeke, N.: Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance Math. Econom. 1(1), 55–72 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldie, C.M., Klüppelberg, C.: Subexponential distributions. In: Adler, R., Feldman, R., Taqqu, M.S. (eds.) A practical Guide to Heavy-Tails: Statistical Techniques and Applications. Birkhäuser, Boston (1998)

    Google Scholar 

  6. Kaas, R., Tang, Q.: Note on the tail behavior of random walk maxima with heavy tails and negative drift. N. Am. Actuar. J. 7(3), 57–61 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Klüppelberg, C., Mikosch, T.: Large deviations of heavy-tailed random sums with applications in insurance and finance. J. Appl. Probab. 34(2), 293–308 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Korshunov, D.A.: Large deviation probabilities for the maxima of sums of independent summands with a negative mean and a subexponential distribution. Theory Probab. Appl. 46(2), 355–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leipus, R., Siaulys, J.: Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes. Insurance Math. Econom. 7(7), 1016–1027 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Ross, S.M.: Stochastic processes. John Wiley & Sons, Inc., New York (1983)

    MATH  Google Scholar 

  11. Tang, Q.: Uniform estimates for the tail probability of maxima over finite horizons with subexponential tails. Probab. Engrg. Inform. Sci. 18(1), 71–86 (2004a)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tang, Q.: Asymptotics for the finite time ruin probability in the renewal model with consistent variation. Stoch. Models. 20(3), 281–297 (2004b)

    Article  MathSciNet  MATH  Google Scholar 

  13. Veraverbeke, N.: Asymptotic behaviour of Wiener-Hopf factors of a random walk. Stochastic Processes Appl. 5(1), 27–37 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Jiang, T. (2009). Asymptotic Behavior of Ruin Probability in Insurance Risk Model with Large Claims. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_103

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_103

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics