Skip to main content

Bifurcation Phenomena of Opinion Dynamics in Complex Networks

  • Conference paper
Complex Sciences (Complex 2009)

Included in the following conference series:

  • 1146 Accesses

Abstract

In this paper, we study the opinion dynamics of Improved Deffuant model (IDM), where the convergence parameter μ is a function of the opposite’s degree K according to the celebrity effect, in small-world network (SWN) and scale-free network (SFN). Generically, the system undergoes a phase transition from the plurality state to the polarization state and to the consensus state as the confidence parameter ε increasing. Furthermore, the evolution of the steady opinion s * as a function of ε, and the relation between the minority steady opinion \(s_{*}^{min}\) and the individual connectivity k also have been analyzed. Our present work shows the crucial role of the confidence parameter and the complex system topology in the opinion dynamics of IDM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., Aberg, Y.: The web of human sexual contacts. Nature 411, 907 (2001)

    Article  Google Scholar 

  2. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440 (1998)

    Article  Google Scholar 

  3. Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U.S.A. 98, 404 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barabási, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A 311, 590 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Csányi, G., Szendrői, B.: Structure of a large social network. Phys. Rev. E 69, 036131 (2004)

    Article  Google Scholar 

  7. Wang, F., Moreno, Y., Sun, Y.: Structure of peer-to-peer social networks. Phys. Rev. E 73, 036123 (2006)

    Article  Google Scholar 

  8. Goh, K.-I., Eom, Y.-H., Jeong, H., Kahng, B., Kim, D.: Structure and evolution of online social relationships: Heterogeneity in unrestricted discussions. Phys. Rev. E 73, 066123 (2006)

    Article  Google Scholar 

  9. Latané, B.: The psychology of social impact. American Psychologist 36, 343 (1981)

    Article  Google Scholar 

  10. Latané, B., Wolf, S.: The social impact of majorities and minorities. Psychological Review 88, 438 (1981)

    Article  Google Scholar 

  11. Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phys. C 11, 1157 (2000)

    Article  MATH  Google Scholar 

  12. Deffuant, G., Neau, D., Amblard, F., Weisbuch, G.: Mixing beliefs among interacting agents. Adv. Complex Systems 3, 87 (2000)

    Article  Google Scholar 

  13. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175 (2006)

    Article  MathSciNet  Google Scholar 

  14. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Porfiri, M., Bollt, E.M., Stilwell, D.J.: Decline of minorities in stubborn societies. Eur. Phys. J. B 57, 481 (2007)

    Article  Google Scholar 

  16. Weisbuch, G., Dedduant, G., Amblard, F.: Persuasion dynamics. Physica A 353, 555 (2005)

    Article  Google Scholar 

  17. Kozma, B., Barrat, A.: Consensus formation on adaptive networks. Phys. Rev. E 77, 016102 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Guo, L., Cai, X. (2009). Bifurcation Phenomena of Opinion Dynamics in Complex Networks. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_114

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_114

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics