Skip to main content

Characterizing the Structural Complexity of Real-World Complex Networks

  • Conference paper

Abstract

Although recent research has shown that the complexity of a network depends on its structural organization, which is linked to the functional constraints the network must satisfy, there is still no systematic study on how to distinguish topological structure and measure the corresponding structural complexity of complex networks. In this paper, we propose the first consistent framework for distinguishing and measuring the structural complexity of real-world complex networks. In terms of the smallest d of the dK model with high-order constraints necessary for fitting real networks, we can classify real-world networks into different structural complexity levels. We demonstrate the approach by measuring and classifying a variety of real-world networks, including biological and technological networks, small-world and non-small-world networks, and spatial and non-spatial networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports 424(4-5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  2. Keller, E.F.: Revisiting ”scale-free” networks. Bioessays 27(10), 1060–1068 (2005)

    Article  Google Scholar 

  3. Li, L., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: Definition, properties, and implications. Internet Mathematics 2(4), 431–523 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bianconi, G.: The entropy of randomized network ensembles. Europhysics Letters 81(2), 28005 (2008)

    Article  MathSciNet  Google Scholar 

  5. Claussen, J.C.: Offdiagonal complexity: A computationally quick complexity measure for graphs and networks. Physica A: Statistical Mechanics and its Applications 375(1), 365–373 (2007)

    Article  Google Scholar 

  6. Kim, J., Wilhelm, T.: What is a complex graph? Physica A: Statistical Mechanics and its Applications 387(11), 2637–2652 (2008)

    Article  MathSciNet  Google Scholar 

  7. Mahadevan, P., Krioukov, D.V., Fall, K.R., Vahdat, A.: Systematic topology analysis and generation using degree correlations. In: SIGCOMM, pp. 135–146 (2006)

    Google Scholar 

  8. Amaral, L.A., Scala, A., Barthelemy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97(21), 11149–11152 (2000)

    Article  Google Scholar 

  9. Goh, K.I., Oh, E., Jeong, H., Kahng, B., Kim, D.: Classification of scale-free networks. Proc. Natl. Acad. Sci. USA 99(20), 12583–12588 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296, 910–913 (2002)

    Article  Google Scholar 

  11. Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J., Alon, U.: On the uniform generation of random graphs with prescribed degree sequences (2004)

    Google Scholar 

  12. Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the iscas-85 benchmarks: A case study in reverse engineering. IEEE Des. Test 16(3), 72–80 (1999)

    Article  Google Scholar 

  13. Kaiser, M., Hilgetag, C.C.: Spatial growth of real-world networks. Phys. Rev. E 69(3), 036103 (2004)

    Article  Google Scholar 

  14. Li, W., Cai, X.: Statistical analysis of airport network of china. Phys. Rev. E 69(4), 046106 (2004)

    Article  Google Scholar 

  15. He, Y., Chen, Z.J.J., Evans, A.C.C.: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex (2007)

    Google Scholar 

  16. Hormozdiari, F., Berenbrink, P., Przulj, N., Sahinalp, S.C.C.: Not all scale-free networks are born equal: The role of the seed graph in ppi network evolution. PLoS Comput. Biol. 3(7) (2007)

    Google Scholar 

  17. Wang, J., Provan, G.M.: Generating application-specific benchmark models for complex systems. In: AAAI, pp. 566–571 (2008)

    Google Scholar 

  18. Wang, J., Provan, G.M.: Topological analysis of specific spatial complex networks. Advances in Complex Systems (in press)

    Google Scholar 

  19. Costa, L., Kaiser, M., Hilgetag, C.: Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Systems Biology 1, 16 (2007)

    Article  Google Scholar 

  20. Dambre, J.: Prediction of interconnect properties for digital circuit design and technology exploration. Ph.D. dissertation: Ghent University, Faculty of Engineering (2003)

    Google Scholar 

  21. Kaiser, M.: Brain architecture: a design for natural computation. Philosophical Transactions of the Royal Society A 365, 3033–3045 (2007)

    Article  MathSciNet  Google Scholar 

  22. Barthlemy, M.: Crossover from scale-free to spatial networks. Europhysics Letters 63, 915–921 (2003)

    Article  Google Scholar 

  23. Przulj, N., Higham, D.J.: Modelling protein-protein interaction networks via a stickiness index. J. R. Soc. Interface 3(10), 711–716 (2006)

    Article  Google Scholar 

  24. Chung, F., Lu, L.: The average distances in a random graph with given expected degrees. Internet Math. 1, 91–113 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ivanic, J., Wallqvist, A., Reifman, J.: Probing the extent of randomness in protein interaction networks. PLoS Comput. Biol. 4(7), e1000114+ (2008)

    Article  Google Scholar 

  26. Friedel, C.C., Zimmer, R.: Influence of degree correlations on network structure and stability in protein-protein interaction networks. BMC Bioinformatics 8, 297+ (2007)

    Article  Google Scholar 

  27. Przulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004)

    Article  Google Scholar 

  28. Higham, D.J.J., Rasajski, M., Przulj, N.: Fitting a geometric graph to a protein-protein interaction network. Bioinformatics (2008)

    Google Scholar 

  29. Serrano, A.M., Krioukov, D., Boguna, M.: Self-similarity of complex networks and hidden metric spaces. Physical Review Letters 100, 078701 (2008)

    Google Scholar 

  30. Ma, H., Kumar, B., Ditges, U., Gunzer, F., Buer, J., Zeng, A.P.: An extended transcriptional regulatory network of escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic acids research 32, 6643 (2004)

    Article  Google Scholar 

  31. Castro, J.J., Doyle III, F.J.: A pulp mill benchmark problem for control: Problem description. J. Proc. Cont. 14, 17–29 (2004)

    Article  Google Scholar 

  32. Provan, G.M., Wang, J.: Automated benchmark model generators for model-based diagnostic inference. In: IJCAI, pp. 513–518 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Wang, J., Provan, G. (2009). Characterizing the Structural Complexity of Real-World Complex Networks. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_118

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_118

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics