Skip to main content

Reconstructing Gene Networks from Microarray Time-Series Data via Granger Causality

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

Reconstructing gene network structure from Microarray time-series data is a basic problem in Systems Biology. In gene regulation networks, the time delays and the combination effects which are not considered by most existent models are key factors to understand the genetic regulatory networks. To address these problems, this paper proposed a fast algorithm to learn initial network structures for gene networks from time-series data by employing the Granger causality model to analyze the time delays and the combination effects for gene regulation. The simulation results on a synthetic network and the ethylene pathway in Arabidopsis show that the proposed algorithm is a promise tool for learning network structures from time-series data.

This work is partially supported by National Basic Research Program of China (No. 2005CB321800) , and the Graduate Innovation Foundation of National University of Defense Technology (No. B060203).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boone, C., Bussey, H., Andrews, B.J.: Exploring Genetic Interactions and Networks with Yeast. Nature Review Genetics 8, 437–449 (2007)

    Article  Google Scholar 

  2. Huang, S.: Gene Expression Profiling, Genetic Networks, and Cellular States: An Integrating Concept for Tumori-genesis and Drug discovery. Journal of Molecular Medicine 77, 469–480 (1999)

    Article  Google Scholar 

  3. Kitano, H.: Systems Biology: a brief overview. Science 295, 1662–1664 (2002)

    Article  Google Scholar 

  4. Smolen, P., Baxter, D.A., Byrne, J.H.: Modeling Transcriptional Control in Gene Networks — Methods Recent Results, and Future Directions. Bulletin of Mathematical Biology 62, 247–292 (2000)

    Article  MATH  Google Scholar 

  5. Jong, H.D.: Modeling and Simulation of Genetic Regulatory System: A Literature Review. Journal of Computational Biology 9(1), 67–163 (2002)

    Article  Google Scholar 

  6. Werhli, A.V., Grzegorczyk, M., Husmeier, D.: Comparative Evaluation of Reverse Engineering Gene Regulatory Networks with Relevance Networks, Graphical Gaussian Models and Bayesian Networks. Bioinformatics 22, 2523–2531 (2006)

    Article  Google Scholar 

  7. Schlitt, T., Brazma, A.: Current Approaches to Gene Regulatory Network Modelling. BMC Bioinformatics, 8(suppl. 6), S9 (2007)

    Article  Google Scholar 

  8. Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random Boolean Network Models and the Yeast Transcriptional Network. Proc. Natl. Acad. Sci. USA 100, 14796–14799 (2003)

    Article  Google Scholar 

  9. Chen, K.C., Wang, T.Y., Tseng, H.H., Huang, C.Y.F., Kao, C.Y.: A Stochastic Differential Equation Model for Quantifying Transcriptional Regulatory Network In Saccharomyces Cerevisiae. Bioinformatics 21(12), 2883–2890 (2005)

    Article  Google Scholar 

  10. Friedman, N., Nachman, I., Pe’er, D.: Learning Bayesian Network Structure from Massive Datasets: the Sparse Candidate Algorithm. In: Laskey, K.B., Prade, H. (eds.) UAI 1999. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 206–215. Morgan Kaufmann, Stockholm (1999)

    Google Scholar 

  11. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian Networks to Analyze Expression Data. In: Proceeding of the Fourth Annual International Conference on Computational Molecular Biology (RECOMB), Tokyo, Japan, pp. 127–135 (2000)

    Google Scholar 

  12. Pe’er, D., Regev, A., Elidan, G., Friedman, N.: Inferring Subnetworks from Perturbed Expression Profiles. Bioinformatics 17 (suppl. 1), S215–S224 (2001)

    Article  Google Scholar 

  13. Friedman, N.: Inferring Cellular Networks Using Probabilistic Graphical Models. Science 303(5659), 799–807 (2004)

    Article  Google Scholar 

  14. Sachs, K., Perez, O., Pe’er, D.: Casual Protein-Signaling Networks Derived from Multi-Parameter Single-Cell Data. Science 308(5721), 523–529 (2005)

    Article  Google Scholar 

  15. Gevaert, O., Smet, F.D., Timmerman, D., Moreau, Y., Moor, B.D.: Predicting the Prognosis of Breast Cancer by Integrating Clinical and Microarray Data with Bayesian Networks. Bioinformatics 22, e184–e190 (2006)

    Article  Google Scholar 

  16. Tong, A., Evangelista, M., Parsons, A.B., et al.: Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science 294, 2364–2368 (2001)

    Article  Google Scholar 

  17. Ernst, J., Nau, G.J., Bar-Joseph, Z.: Clustering Short Time Series Gene Expression Data. Bioinformatics 21(suppl. 1), I159–I168 (2005)

    Article  Google Scholar 

  18. Murphy, K., Mian, S.: Modelling Gene Expression Data Using Dynamic Bayesian Networks. Technical report, Computer Science Division, University of California, Berkeley, CA (1999)

    Google Scholar 

  19. Perrin, B.E., Ralaivola, L., Mazurie, A., et al.: Gene Networks Inference Using Dynamic Baysian Networks. Bioinformatics 19(suppl. 2), ii138–ii148 (2003)

    Google Scholar 

  20. Kim, S., Imoto, S., Miyano, S.: Dynamic Bayesian Network and Nonparametric Regression for Nonlinear Modeling of Gene Networks from Time Series Gene Expression Data. Biosystems 75, 57–65 (2004)

    Article  MATH  Google Scholar 

  21. Zou, M., Conzen, S.D.: A New Dynamic Bayesian Network Approach for Identifying Gene Regulatory Networks from Time Course Microarray Data. Bioinformatics 21(1), 71–79 (2005)

    Article  Google Scholar 

  22. Dojer, N., Gambin, A., Mizera, A., Wilczyski, B., Tiuryn, J.: Applying Dynamic Bayesian Networks to Perturbed Gene Expression Data. BMC Bioinformatics 7, 249 (2006)

    Article  Google Scholar 

  23. Li, X., Rao, S., Jiang, W., Li, C., Yun, X.: Discovery of Time-Delayed Gene Regulatory Networks Based on Temporal Gene Expression Profiling. BMC Bioinformatics 7, 26 (2006)

    Article  Google Scholar 

  24. Shi, Y., Mitchell, T., Bar-Joseph, Z.: Inferring Pairwise Regulatory Relationships from Multiple Time Series Datasets. Bioinformatics 23(6), 755–763 (2007)

    Article  Google Scholar 

  25. Schelter, B., Winterhalder, M., Timmer, J.: Handbook of Time Series Analysis: Recent Theoretical Developments. Wiley-VCH, Weinheim (2006)

    Book  MATH  Google Scholar 

  26. Li, H., Guo, H.: Molecular basis of the ethylene signaling and response pathway in Arabidopsis. Journal of Plant Growth Regulation 26(2), 106–117 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Luo, Q., Liu, X., Yi, D. (2009). Reconstructing Gene Networks from Microarray Time-Series Data via Granger Causality. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics