Abstract
We study a queueing transition of directed polymer in random media with an attractive defect at the center of the one dimensional substrate. The end to end distance Δx of the polymer follows Δx ~t 1/z with z = 3/2, for weak defect strength ε where t is the polymer length. If ε ≥ ε c then the polymer is localized with finite Δx in long t limit. The transition is related to the queueing phenomena of the asymmetric simple exclusion process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gwa, L.-H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett. 68, 725–728 (1992)
Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493–1517 (1993)
Blythe, R.A., Janke, W., Johnston, D.A., Kenna, R.: The grand-canonical asymmetric exclusion process and the one-transit walk. J. Stat. Mech., P06001 (2004)
Rosini, M., Reggiani, L.: A Monte Carlo investigation of noise and diffusion of particles exhibiting asymmetric exclusion processes. J. Phys., Condens. Matter 19, 036226 (2007)
Tang, L.-H., Lyuksyutov, I.F.: Directed polymer localization in a disordered medium. Phys. Rev. Lett. 71, 2745–2748 (1993)
Balents, M., Kardar, M.: Disorder-induced unbinding of a flux line from an extended defect. Phys. Rev. B 49, 13030–13048 (1994)
Kinzelbach, H., Lässig, M.: Depinning in a random medium. J. Phys. A 28, 6535–6541 (1995)
Hwa, T., Nattermann, T.: Disorder-induced depinning transition. Phys. Rev. B 51, 455–469 (1995)
Lässig, M.: On growth, disorder, and field theory. J. Phys. Condens. Matter 10, 9905–9950 (1998)
Kandel, D., Mukamel, D.: Defects, Interface Profile and Phase Transitions in Growth Models. Europhys. Lett. 20, 325–329 (1992)
Slanina, F., Kotrla, M.: Weak pinning: surface growth in the presence of a defect. Physica A 256, 1–17 (1998)
Myllys, M., Maunuksela, J., Merikoski, J., Timonen, J., Horváth, V.K., Ha, M., den Nijs, M.: Effect of a columnar defect on the shape of slow-combustion fronts. Phys. Rev. E 68, 051103 (2003)
Ha, M., Timonen, J., den Nijs, M.: Queuing transitions in the asymmetric simple exclusion process. Phys. Rev. E 68, 056122 (2003)
Song, H.S., Kim, J.M.: Faceting Transition of a Restricted Solid-on-Solid Growth Model with a Defect Site. J. Korean Phys. Soc. 48, S245–S248 (2006)
van Beijeren, H.: Exactly Solvable Model for the Roughening Transition of a Crystal Surface. Phys. Rev. Lett. 38, 993–996 (1977)
Kotrla, M., Levi, A.C.: Kinetic six-vertex model as model of bcc crystal growth. J. Stat. Phys. 64, 579–604 (1991)
Kotrla, M., Levi, A.C.: Kinetic roughness in the BCSOS model. J. Phys. A 25, 3121–3132 (1992)
Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic Scaling of Growing Interfaces. Phys. Rev. Lett. 56, 889–892 (1986)
Kardar, M., Zhang, Y.-C.: Scaling of Directed Polymers in Random Media. Phys. Rev. Lett. 58, 2087–2090 (1987)
Kim, J.M., Moore, M.A., Bray, A.J.: Zero-temperature directed polymers in a random potential. Phys. Rev. A 44, 2345–2351 (1991)
Kim, J.M.: Phase transition of directed polymer in random potentials on 4+1 dimensions. Physica A 270, 335–341 (1999)
Kim, J.M.: Restricted Solid-on-solid Model and a Directed Polymer in Random Potentials. J. Korean Phys. Soc. 45, 1413–1419 (2004)
Gelfand, M.P.: Random walks in random media with random signs. Physica A 177, 67–72 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Lee, J.H., Kim, J.M. (2009). Queueing Transition of Directed Polymer in Random Media with a Defect. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-02466-5_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02465-8
Online ISBN: 978-3-642-02466-5
eBook Packages: Computer ScienceComputer Science (R0)