Skip to main content

SIRS Dynamics on Random Networks: Simulations and Analytical Models

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

The standard pair approximation equations (PA) for the Susceptible-Infective-Recovered-Susceptible (SIRS) model of infection spread on a network of homogeneous degree k predict a thin phase of sustained oscillations for parameter values that correspond to diseases that confer long lasting immunity. Here we present a study of the dependence of this oscillatory phase on the parameter k and of its relevance to understand the behaviour of simulations on networks. For k = 4, we compare the phase diagram of the PA model with the results of simulations on regular random graphs (RRG) of the same degree. We show that for parameter values in the oscillatory phase, and even for large system sizes, the simulations either die out or exhibit damped oscillations, depending on the initial conditions. This failure of the standard PA model to capture the qualitative behaviour of the simulations on large RRGs is currently being investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Murray, J.D.: Mathematical Biology I: An Introduction. Springer, New York (2002)

    MATH  Google Scholar 

  2. Keeling, M.J., Eames, K.T.D.: Networks and Epidemic Models. J. R. Soc. Interface 2, 295–307 (2005)

    Article  Google Scholar 

  3. Matsuda, H., Ogita, N., Sasaki, A., Sato, K.: Statistical Mechanics of Population: The Lattice Lotka-Volterra Model. Prog. Theor. Phys. 88, 1035–1049 (1992); Keeling, M.J., Rand, D.A., Morris, A.J.: Correlation Models for Childhood Epidemics. Proc. R. Soc. Lond. B 264, 1149–1156 (1997); van Baalen, M.: Pair Approximations for Different Spatial Geometries. In: Dieckmann, U., Law, R., Metz, J.A.J. (eds.) The Geometry of Ecological Interactions: Simplifying Spatial Complexity, pp. 359–387. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  4. Joo, J., Lebowitz, J.L.: Pair Approximation of the Stochastic Susceptible-Infected-Recovered-Susceptible Epidemic Model on the Hypercubic Lattice. Phys. Rev. E 70, 036114 (2004)

    Article  MathSciNet  Google Scholar 

  5. Rand, D.A.: Correlation Equations and Pair Approximations for Spatial Ecologies. In: McGlade, J. (ed.) Advanced Ecological Theory: Principles and Applications, pp. 100–142. Blackwell Science, Oxford (1999); Morris, A.J.: Representing Spatial Interactions in Simple Ecological Models. PhD dissertation, University of Warwick, Coventry, UK (1997); Benoit, J., Nunes, A., Telo da Gama, M.M.: Pair Approximation Models for Disease Spread. Eur. Phys. J. B 50, 177–181 (2006)

    Google Scholar 

  6. Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A New Algorithm for Monte Carlo Simulation of Ising Spin Systems. J. Comput. Phys. 17, 10–18 (1975); Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Comput. Phys. 22, 403–434 (1976)

    Google Scholar 

  7. Satulovsky, J.E., Tomé, T.: Stochastic Lattice Gas Model for a Predator-Prey Sytem. Phys. Rev. E 49, 5073–5079 (1994); Tomé, T., de Carvalho, K.C.: Stable Oscillations of a Predator-Prey Probabilistic Cellular Automaton: a Mean-Field Approach. J. Phys. A: Math. Theor. 40, 12901–12915 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Szabó, G., Szolnoki, A., Izsák, R.: Rock-Scissors-Paper Game on Regular Small-World Networks. J. Phys. A: Math. Gen. 37, 2599–2609 (2004); Szolnoki, A., Szabó, G.: Phase Transitions for Rock-Scissors-Paper Game on Different Networks. Phys. Rev. E 70, 037102 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Rozhnova, G., Nunes, A. (2009). SIRS Dynamics on Random Networks: Simulations and Analytical Models. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics