Abstract
The standard pair approximation equations (PA) for the Susceptible-Infective-Recovered-Susceptible (SIRS) model of infection spread on a network of homogeneous degree k predict a thin phase of sustained oscillations for parameter values that correspond to diseases that confer long lasting immunity. Here we present a study of the dependence of this oscillatory phase on the parameter k and of its relevance to understand the behaviour of simulations on networks. For k = 4, we compare the phase diagram of the PA model with the results of simulations on regular random graphs (RRG) of the same degree. We show that for parameter values in the oscillatory phase, and even for large system sizes, the simulations either die out or exhibit damped oscillations, depending on the initial conditions. This failure of the standard PA model to capture the qualitative behaviour of the simulations on large RRGs is currently being investigated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Murray, J.D.: Mathematical Biology I: An Introduction. Springer, New York (2002)
Keeling, M.J., Eames, K.T.D.: Networks and Epidemic Models. J. R. Soc. Interface 2, 295–307 (2005)
Matsuda, H., Ogita, N., Sasaki, A., Sato, K.: Statistical Mechanics of Population: The Lattice Lotka-Volterra Model. Prog. Theor. Phys. 88, 1035–1049 (1992); Keeling, M.J., Rand, D.A., Morris, A.J.: Correlation Models for Childhood Epidemics. Proc. R. Soc. Lond. B 264, 1149–1156 (1997); van Baalen, M.: Pair Approximations for Different Spatial Geometries. In: Dieckmann, U., Law, R., Metz, J.A.J. (eds.) The Geometry of Ecological Interactions: Simplifying Spatial Complexity, pp. 359–387. Cambridge University Press, Cambridge (2000)
Joo, J., Lebowitz, J.L.: Pair Approximation of the Stochastic Susceptible-Infected-Recovered-Susceptible Epidemic Model on the Hypercubic Lattice. Phys. Rev. E 70, 036114 (2004)
Rand, D.A.: Correlation Equations and Pair Approximations for Spatial Ecologies. In: McGlade, J. (ed.) Advanced Ecological Theory: Principles and Applications, pp. 100–142. Blackwell Science, Oxford (1999); Morris, A.J.: Representing Spatial Interactions in Simple Ecological Models. PhD dissertation, University of Warwick, Coventry, UK (1997); Benoit, J., Nunes, A., Telo da Gama, M.M.: Pair Approximation Models for Disease Spread. Eur. Phys. J. B 50, 177–181 (2006)
Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A New Algorithm for Monte Carlo Simulation of Ising Spin Systems. J. Comput. Phys. 17, 10–18 (1975); Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Comput. Phys. 22, 403–434 (1976)
Satulovsky, J.E., Tomé, T.: Stochastic Lattice Gas Model for a Predator-Prey Sytem. Phys. Rev. E 49, 5073–5079 (1994); Tomé, T., de Carvalho, K.C.: Stable Oscillations of a Predator-Prey Probabilistic Cellular Automaton: a Mean-Field Approach. J. Phys. A: Math. Theor. 40, 12901–12915 (2007)
Szabó, G., Szolnoki, A., Izsák, R.: Rock-Scissors-Paper Game on Regular Small-World Networks. J. Phys. A: Math. Gen. 37, 2599–2609 (2004); Szolnoki, A., Szabó, G.: Phase Transitions for Rock-Scissors-Paper Game on Different Networks. Phys. Rev. E 70, 037102 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Rozhnova, G., Nunes, A. (2009). SIRS Dynamics on Random Networks: Simulations and Analytical Models. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_78
Download citation
DOI: https://doi.org/10.1007/978-3-642-02466-5_78
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02465-8
Online ISBN: 978-3-642-02466-5
eBook Packages: Computer ScienceComputer Science (R0)