Skip to main content

Scaling Relations in Absorbing Phase Transitions with a Conserved Field in One Dimension

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

Validity of two scaling relations β = ν  ∥  θ and z = ν  ∥ / ν  ⊥  widely known in absorbing phase transitions is studied for the conserved lattice gas (CLG) model and the conserved threshold transfer process CTTP) both in one dimension. For the CLG model, it is found that both relations hold when the critical exponents calculated from the all-sample average density of active particles are considered. For the CTTP model, various exponents are calculated via Monte Carlo simulations and they are confirmed by the off-critical scaling and the finite-size scaling analyses. The exponents estimated from the all-sample averages again satisfy both relations. These observations are in strict disagreement with earlier observations in two dimensions [Phys. Rev. Lett. 85, 1803 (2000); Phys Rev. E 68, 056102 (2003)] but support the more recent observation for the CLG model [Phys. Rev. E 78, 040103(R) (2008)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marro, J., Dickman, R.: Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  2. Hinrichsen, H.: Adv. Phys. 49, 815 (2000); Hinrichsen, H.: Braz. J. Phys. 30, 69 (2000)

    Google Scholar 

  3. Ben-Avraham, D., Havlin, S.: Diffusion and Reaction in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  4. Ódor, G.: Rev. Mod. Phys. 76, 663 (2004)

    Google Scholar 

  5. Janssen, H.K.: Z. Phys. B: Condens. Matt. 42, 151 (1981)

    Google Scholar 

  6. Grassberger, P.: Z. Phys. B Condens. Matt. 47, 365 (1982)

    Google Scholar 

  7. Jensen, I., Dickman, R.: Phys. Rev. E 48, 1710 (1993); Jensen, I.: J. Phys. A 27, L61 (1994)

    Google Scholar 

  8. Muñoz, M.A., Grinstein, G., Dickamn, R., Livi, R.: Phys. Rev. Lett. 76, 451 (1996)

    Google Scholar 

  9. Takayasu, H., Tretyakov, A.Y.: Phys. Rev. Lett. 68, 3060 (1992)

    Google Scholar 

  10. Jensen, I.: Phys. Rev. E 50, 3623 (1994)

    Google Scholar 

  11. Kwon, S., Park, H.: Phys. Rev. E 52, 5955 (1995)

    Google Scholar 

  12. Cardy, J., Tauber, U.C.: Phys. Rev. Lett. 77, 4780 (1996)

    Google Scholar 

  13. For the bosonic mversion of the PCPD model, Howard, M.J., Täuber, J.C.: J. Phys. A 30, 7721 (1997); for the fermionic version, Carton, E., Henkel, M., Schollwöck, U.: Phys. Rev. E 63, 36101 (2001)

    Google Scholar 

  14. Kochelkoren, J., Chate, H.: Phys. Rev. Lett. 90, 125701 (2002)

    Google Scholar 

  15. Noh, J.D., Park, H.: Phys. Rev. E 69, 016122 (2004)

    Google Scholar 

  16. Hinrichsen, H.: Physica A 361, 457 (2006)

    Google Scholar 

  17. Park, K., Hinrichsen, H., Kim, I.-M.: Phys. Rev. E 66, 025101 (2002)

    Google Scholar 

  18. Ódor, G.: Phys. Rev. E 67, 056114 (2003)

    Google Scholar 

  19. Rossi, M., Pastor-Satorras, R., Vespignani, A.: Phys. Rev. Lett. 85, 1803 (2000)

    Google Scholar 

  20. Manna, S.S.: J. Phys. A 24, L363 (1991)

    Google Scholar 

  21. Dhar, D.: Physica 263A, 4 (1999)

    Google Scholar 

  22. Vespignani, A., Dickman, R., Muñoz, M.A., Zapperi, S.: Phys. Rev. E 62, 4564 (2000)

    Google Scholar 

  23. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, London (1971)

    Google Scholar 

  24. Amit, D.J.: Field Theory, the Renormalization Group, and Critical Phenomena. World Scientific, Singapore (1984)

    Google Scholar 

  25. Vespignani, A., Dickman, R., Muñoz, M.A., Zapperi, S.: Phys. Rev. Lett. 81, 5676 (1998); Dickman, R., Vespignani, A., Zapperi, S.: Phys. Rev. E 57, 5095 (1998)

    Google Scholar 

  26. Lübeck, S., Misra, A.: Eur. Phys. J. B 26, 75 (2002)

    Google Scholar 

  27. Lübeck, S., Heger, P.C.: Phys. Rev. E 68, 56102 (2003); Lübeck, S.: ibid 66, 046114 (2002)

    Google Scholar 

  28. Lee, S.-G., Lee, S.B.: Phys. Rev. E 77, 021113 (2008)

    Google Scholar 

  29. Lee, S.B., Lee, S.-G.: Phys. Rev. E 78, 040103(R) (2008)

    Google Scholar 

  30. de Oliveira, M.J.: Phys. Rev. E 71, 016112 (2005)

    Google Scholar 

  31. Lübeck, S.: Phys. Rev. E 64, 16123 (2001); Lübeck, S.: ibid 66, 46114 (2002)

    Google Scholar 

  32. Dickman, R., Alava, M., Muñoz, M.A., Peltola, J., Vespignani, A., Zapperi, S.: Phys. Rev. E 64, 056104 (2001)

    Google Scholar 

  33. Lee, S.-G., Lee, S.B.: Phys. Rev. E 77, 041122 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Lee, SG., Lee, S.B. (2009). Scaling Relations in Absorbing Phase Transitions with a Conserved Field in One Dimension. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_83

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics