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Abstract

We derive variational equations to analyze the stability of synchronization for coupled near-

identical oscillators. To study the effect of parameter mismatch on the stability in a general

fashion, we define master stability equations and associated master stability functions, which are

independent of the network structure. In particular, we present several examples of coupled near-

identical Lorenz systems configured in small networks (a ring graph and sequence networks) with a

fixed parameter mismatch and a large Barabasi-Albert scale-free network with random parameter

mismatch. We find that several different network architectures permit similar results despite various

mismatch patterns.
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I. INTRODUCTION

The phenomena of synchronization has been found in various aspects of nature and

science[13]. Its applications have ranged widely from biology[4, 10] to mathematical

epidemiology[14], and chaotic oscillators[2], to communicational devices in engineering[3],

etc. With the development of theory and application in complex networks[12], the study

of synchronization between a large number of coupled dynamically driven oscillators has

become a popular and exciting developing topic, see for example [11, 15, 16, 18, 19, 20].

To model the coupled dynamics on a network (assumed to be unweighted and undirected

and connected throughout this paper), we consider, for i = 1, 2, ..., N :

ẇi = f(wi, µi)− g
N∑
j=1

LijH(wj) (1)

where wi ∈ <m is used to represent the dynamical variable on the ith unit; f : <m×<p → <m

is the individual dynamics (usually chaotic dynamics for most interesting problems) on i

and µi ∈ <p is the corresponding parameter; L ∈ <N×N is the graph laplacian defined by

Lij ≡ −1 if there is an edge connecting node i and j and the diagonal element Lii is defined

to be the total number of edges incident to node i in the network; H : <m → <m is a

uniform coupling function on the net; and g ∈ < is the uniform coupling strength (usually

> 0 for diffusive coupling). The whole system can be represented compactly with the use of

Kronecker product:

ẇ = f(w,µ)− g · L⊗H(w) (2)

where w= (wT1 , w
T
2 , ...w

T
N)T is a column vector of all the dynamic variables, and likewise for

µ and f ; and ⊗ is the usual Kronecker product[1].

The majority of the theoretical work has been focused on identical synchronization where

maxi,j ||wi(t)− wj(t)|| → 0 as t → ∞, since it is in this situation the stability analysis can

be carried forward by using the master stability functions proposed in the seminal work [8].

However, realistically it is impossible to find or construct a coupled dynamical system made

up of exactly identical units, in which case identical synchronization rarely happens, but

instead, a nearly synchronous state often takes place instead, where maxi,j ||wi(t)− wj(t)|| ≤

C for some small constant C > 0 as t→∞.

It is thus important to analyze how systems such as Eq. (1) evolve, when parameter

mismatch appears. In [17], similar variational equations were used to study the impact of
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parameter mismatch on the possible de-synchronization. To study the effect of parameter

mismatch on the stability of synchronization, and more specifically, to find the distance

bound C in terms of the given parameters in Eq. (1), we derive variational equations of

system such as Eq. (1) and extend the master stability function approach to this case, to

decompose the problem into two parts that depend on the individual dynamics and network

structure respectively.

II. THEORY: MASTER STABILITY EQUATIONS AND FUNCTIONS

A. Derivation of Variational Equations

When the parameters µi of individual units in Eq. (1) are close to each other,

centered around their mean µ̄, the coupled units wi are found empirically to sat-

isfy maxi,j ||wi(t)− wj(t)|| ≤ C for some C > 0 as t → ∞, referred to as near

synchronization[17]. When such near synchronization state exists, the average trajectory well

represents the collective behavior of all the units. The average trajectory w̄ ≡ 1
N

∑N
i=1wi of

Eq. (1) satisfies:

˙̄w =
1

N

N∑
i=1

f(wi, µi)− g
N∑
i=1

N∑
j=1

LijH(wj)

=
1

N

N∑
i=1

f(wi, µi), (3)

since
∑N
i=1 Lij = 0 by the definition of L. The variation ηi ≡ wi − w̄ of each individual unit

is found to satisfy the following variational equation:

η̇i = Dwf(w̄, µ̄)ηi − g
N∑
j=1

LijDH(w̄)ηj +Dµf(w̄, µ̄)δµi, (4)

where µ̄ ≡ ∑N
i=1 µi and δµi ≡ µi − µ̄; and Dw represents the derivative matrix with respect

to w and likewise for Dµ and DH. The above variational equations can be represented in

Kronecker product form as:

η̇ =
[
IN ⊗Dwf − g · L⊗DH

]
η +

[
IN ⊗Dµf

]
δµ, (5)

where ηi are stacked into a column vector η and likewise for δµi.
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B. Decomposition of the Variational Equations

Since we are dealing with undirected graph, the associated L is symmetric and positive

semi-definite, and thus L is diagonalizable: L = PΛP T [1], where Λ is the diagonal matrix

whose ith diagonal entry λi is the ith eigenvalue of L (arranged in the order λ1 ≤ λ2 ≤ ... ≤

λN); and P is the orthogonal matrix whose ith column vi = (v1,i, ..., vN,i)
T is the normalized

eigenvector associated with λi, and all these vi form an orthonormal basis of <N . Note that

because of
∑N
i=1 Lij = 0, we always have λ1 = 0 with v1 = 1√

N
(1, ..., 1)T ; and since we have

assumed that the graph is connected, the following holds: λ1 ≡ 0 < λ2 ≤ ... ≤ λN .

We may uncouple the variational equation Eq. (5) by making the change of variables

ζ ≡ (P T ⊗ Im)η, (6)

or more explicitly, for each i,

ζi ≡ v1,iη1 + v2,iη2 + ...+ vN,iηN , (7)

to yield:

ζ̇ =
[
IN ⊗Dwf − g · Λ⊗DH

]
ζ +

[
P T ⊗Dµf

]
δµ. (8)

where ζ ≡ (ζT1 , ..., ζ
T
N)T . Note that since

∑N
i=1 ηi ≡

∑N
i=1 (wi − w̄) = 0, and v1 =

1√
N

(1, ..., 1)T , the following holds: ζ1 ≡ 0, by Eq. (7).

Note that since the transformation ζ ≡ (P T ⊗ Im)η is an orthogonal transformation,

||ζ|| ≡ ||η|| with the choice of Euclidean norm. In other words, for ||.|| being the usual

Euclidean distance, we have:
N∑
i=1

||ζi||2 ≡
N∑
i=1

||ηi||2. (9)

The homogeneous part in Eq. (8) has block diagonal structure and we may write for each

eigenmode (i = 2, 3, ..., N):

ζ̇i =
[
Dwf − gλiDH

]
ζi +Dµf ·

( N∑
j=1

vj,iδµj
)
. (10)

The vector
∑N
j=1 vj,iδµj is the weighted average of parameter mismatch vectors, weighted

by the eigenvector components associated with λi, and may be thought of as the length of

projection of the parameter mismatch vector onto the eigenvector vi.
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C. Extended Master Stability Equations and Functions

The variational equation in the new coordinate system Eq. (10) suggests a generic

approach[8] to study the stability of synchronization for a given network coupled dynami-

cal system investigating on the effect of λi and
(∑N

j=1 vj,iδµj
)

on the solution of Eq. (10).

We define an extended master stability equation [22] for near identical coupled dynamical

systems:

ξ̇ =
[
Dwf − α ·DH

]
+Dµf · ψ (11)

where we have introduced two auxiliary parameters, α ∈ < and ψ ∈ <p. This generic

equation decomposes the stability problem into two separate parts: one that depends only

on the individual dynamics and the coupling function, and one that depends only on the

graph Laplacian and parameter mismatch. Note that the latter not only depends on the

spectrum of L as in [8], but also on the combination of the eigenvectors and parameter

mismatch vector.

Once the stability of Eq. (11) is determined as a function of α and ψ, the stability of any

coupled network oscillators as described by Eq. (1), for the given f and H used in Eq. (11),

can be found by simply setting

α = gλi (12)

and

ψ =
N∑
j=1

vj,iδµj (13)

where λi, vj,i, δµj can be obtained by the knowledge of the underlying network structure

L and parameter mismatch pattern. Thus, we have reduced the stability analysis of the

original mN -dimensional problem to that of an m-dimensional problem with one additional

parameter, combined with an eigen-problem.

The associated master stability function (MSF) Ω(α, ψ) of Eq. (11) is defined as:

Ω(α, ψ) ≡ lim
T→∞

√
1

T

∫ T

0
||ξ(t)||2dt (14)

when the limit exists, where ξ is a solution of Eq. (11) for the given (α, ψ) pair.

For a given coupled oscillator network by Eq. (1), we have the following equation, based

on the generic MSF Ω:

lim
T→∞

√√√√ 1

T

∫ T

0

N∑
i=1

||wi(t)− w̄i(t)||2dt
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≡ lim
T→∞

√√√√ 1

T

∫ T

0

N∑
i=1

||ηi(t)||2dt ≡ lim
T→∞

√√√√ 1

T

∫ T

0

N∑
i=2

||ζi(t)||2dt

=
N∑
i=2

Ω2(gλi, ψi) (15)

where λi are the eigenvalues of the graph Laplacian and ψi is obtained through Eq. (13).

Thus, once the MSF for the dynamics f and coupling function H has been computed, it

can be used to compute the asymptotic total distance from single units to the average

trajectory: <
∑N
i=1 ||wi(t)− w̄i(t)||2 > [23] for any coupled oscillator network by summing

up the corresponding Ω2(gλi, ψi) and take the square root.

In Fig. 1 we plot the MSF for f being Lorenz equations:

ẋ = σ(y − x)

ẏ = x(r − z)− y

ż = xy − βz (16)

as individual dynamics in Eq. (1) (w = [x, y, z]T ). The parameters are chosen as: σ =

10, β = 8
3
, and r is allowed to be adjustable, i.e., r is the µ in Eq. (1). The coupling function

H is taken as: H(w) = w, i.e., an identity matrix operator.

D. Conditions for Stable Near Synchronization

For near synchronization to appear in the presence of parameter mismatch, it is required

that the system described by Eq. (1) in the absence of parameter mismatch undergoes

stable identical synchronization, which can be checked by using MSF[8]. In this case, the

largest Lyapunov exponent of the synchronous trajectory associated with the homogeneous

variational equation:

ξ̇ =
[
Dwf − α ·DH

]
ξ (17)

is negative, and its solution can be written as ξ∗(t) = Φ(t, 0)ξ(0) where Φ(t, τ) is the funda-

mental transition matrix [24], satisfying

||Φ(t, τ)|| ≤ γe−λ(t−τ) (18)

for t ≥ τ and some finite positive constants γ and λ.
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FIG. 1: (Color online) MSF for Lorenz system Eq. (16), with σ = 10, β = 8
3 , adjustable parameter

being r, and coupling function H being an identity matrix operator. The domain shown here is

for α from 5 to 50 and ψ from −0.04 to 0.04, while the actual valid domain of MSF could be as

large as the stability region of the identical Lorenz system (in this case is the region α > λ0 where

λ0 is the largest lyapunov exponent of the original Lorenz system (≈ 1)).

Note that the transition to loss of stability at certain time instances can occur due to

the embedded periodic orbits[7, 17], in which case the above inequality will not hold. In

this paper we consider the situation where Eq. (18) holds for most of the time, with λ being

the Lyapunov exponent of the trajectory associated with Eq. (17), although at certain time

instances Eq. (18) need not hold, as discussed in [7, 17], referred to as bubbling transition[6].
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The solution to Eq. (11) can be expressed as:

ξ(t) = Φ(t, 0)ξ(0) +
∫ t

0
Φ(t, τ)b(τ)dτ , (19)

where we have defined b(τ) ≡ Dµf(s(τ), µ̄) · ψ. Under the condition of Eq. (18), we have

the following bound for ξ(t):

||ξ(t)|| ≤ ||Φ(t, 0)|| · ||ξ(0)||+
∫ t

0
||Φ(t, τ)||dτ · sup

t
||b(t)||

≤ γe−λt||ξ(0)||+ γ

λ
(1− e−λt) sup

t
||b(t)||

→ γ

λ
sup
t
||b(t)|| as t→∞. (20)

Thus, the conditions for stable near synchronization of Eq. (1) are:

1. The corresponding identical system (without parameter mismatch) is stably synchro-

nized, or equivalently, the associated variational equation Eq. (17) is exponentially

stable;

2. The inhomogeneous part b(τ) ≡ Dµf(s(τ), µ̄) · ψ in Eq. (11) is bounded.

These conditions are sufficient to guarantee the boundness of pairwise distance between any

two units, so that near synchronous state is stable.

Eq. (18) and Eq. (19) also allow us to analyze quantitatively the magnitude of asymptotic

error of a near-identical system such as Eq. (1). For all other variables being the same, if the

magnitude of parameter mismatch is scaled by a factor k, then the corresponding variation

will become:

ξ̃(t) = Φ(t, 0)ξ(0) + k ·
∫ t

0
Φ(t, τ)b(τ)dτ (21)

where ξ(t) denotes the variation of the original unscaled near-identical system, which follows

Eq. (19). The first term of both Eq. (19) and Eq. (21) goes to zero according to Eq. (18),

so that asymptotically the following holds: ξ̃(t) = k · ξ(t), i.e., the variation is scaled by the

same factor correspondingly.

III. EXAMPLES OF APPLICATION

A. Methodology

When the units coupling through the network are known exactly, meaning that the pa-

rameter of each unit is known, then from Eq. (12) and Eq. (13) we may use the Ω obtained
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from MSF at the corresponding (α, ψ) pairs. In Sec. 3.2 and Sec. 3.3 we illustrate this with

examples of small networks.

On the other hand, for large networks, in the case that parameters of individual units

are not known exactly, but follow a Gaussian distribution: δµi ∼ N(µ̄, ε2), then in Eq. (10)

we have:

( N∑
j=1

vj,iδµj
)
∼ N(µ̄,

N∑
j=1

v2
j,iε

2)

∼ N(µ̄, ε2) (22)

assuming the δµi are identical and independent. The standard deviation ε may be used, as

an expected bound for ψ in Eq. (13), to compute an expected MSF to predict the possible

variation of individual units to the average trajectory. In Sec. 3.3 a scale-free network with

N = 500 vertices is used to illustrate.

In all the examples, the individual dynamics is the Lorenz equation Eq. (16), with param-

eters σ = 10, β = 8
3
, and ri = 28 + δri where δri is the parameter mismatch on unit i. The

coupling function is chosen as H(w) = w with coupling strength g specified differently in

each example. The variation of individual units to the average trajectory <
∑N
i=1 ||ηi(t)||2 >

is approximated by T = 200 with equally time spacing τ = 0.01.

B. Example: Ring Graph

We consider a small and simple graph to illustrate. The graph as well as three different

patterns of parameter mismatch are shown in Fig. 2. In Fig. 3 we show the actual variation

on individual units and that by MSF.

The MSF predicts well the actual variations found in this near-identical oscillator network,

in all three cases. Furthermore, the way parameter mismatch are distributed in the graph is

relevant, as a consequence of Eq. (10). From left to right in Fig. (2), the parameter mismatch

is distributed more heterogeneously, resulting in larger variation along the near synchronous

trajectory.
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FIG. 2: (Color online) Ring graph (red circles represent vertices and black lines represent edges)

with specific parameter mismatch on each unit. The magnitude of parameter mismatch on each

unit is assumed to be the same, ε. The plus/minus sign on a vertex represents the corresponding

sign of mismatch on that unit, ” + ” for +ε and ”− ” for −ε. So the left graph has the parameter

mismatch pattern (starting from the top unit): [−ε,+ε,−ε,+ε,−ε,+ε], the middle graph has the

pattern [−ε,−ε,+ε,−ε,+ε,+ε], and the right graph has the pattern [−ε,−ε,−ε,+ε,+ε,+ε].

C. Example: Sequence Networks

Sequence networks[21] are a special class of networks that can be encoded by the so

called creation sequence. In Fig. 4 three different sequence networks of the creation sequence

(A,A,A,B,B,B) under different connection rules are shown. Interestingly, despite the fact

that the structure of these networks are different, the variation of individual units to the

average trajectory are the same, under the mismatch pattern [−ε,−ε,−ε,+ε,+ε,+ε], see

Fig. 5.

Study on the eigenvector structure on these networks shows that this comes from the

fact that the eigenvectors of all these three networks are the same, and more importantly,

the parameter mismatch vector [−ε,−ε,−ε,+ε,+ε,+ε] is parallel to one of the eigenvectors,

corresponding to the same eigenvalue λ = 6 in all three cases. Thus, the only active error

mode in the eigenvector basis are the same for all three networks, resulting in the same

variations.

D. Example: Scale-free Networks

The synchronization stability of a large network, with the knowledge of the probability

distribution of parameters, is another interesting problem. To show how an expected MSF
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FIG. 3: (Color online) Validating MSF on a ring graph. Here the coupling strength is g = 5. The

units are coupled through a ring graph, with specific parameter mismatch patterns as shown in

Fig. 2. The vertical axis represents the average variation at each given ε. Blue squares, crosses,

and circles are obtained from actual time series, computed through <
∑N
i=1 ||ηi(t)||2 > where ηi(t)

is the distance from unit i to the average trajectory at time t. Black lines (dashed, solid, and

dotted) are theoretical prediction
√∑N

i=1 Ω2(αi, ψi) from MSF at (αi, ψi) paris, where (αi, ψ) are

computed according to Eq. (12) and Eq. (13).

will apply, we use a scale-free network as an example. The network is generated using the BA

model[9]: start with a small initial network, consecutively add new vertices into the current

network; when a new vertex is introduced, it connects to m preexisting vertices, based on

the preferential attachment rule[9]. The network generated through process is known as a

BA network, which is one example of a scale-free network. Here we use generate such a BA

network with N = 500 vertices and m = 12.

In Fig. 6 we show how parameter mismatch affect synchronization on a BA network. The

parameters on each unit are assumed to follow the Gaussian distribution with mean 28 and

standard deviation ε for each given ε. The expected MSF, as described in Sec. 3.1, predicts

well the actual variation to the average trajectory, see Fig. 6.
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FIG. 4: (Color online) 2-letter sequence nets[21] consisting of 6 vertices and 2 layers (red and

blue circles represent vertices and black lines represent edges) obtained from the same creation

sequence (A,A,A,B,B,B) under three different rules, on the left the connection rule is B → A,

meaning that whenever a vertex of type B is added into the current net, it connects to all previous

vertices of type A, thus a bipartite complete graph is created based on this sequence; on the

middle the connection rule is B → A,B, resulting in a threshold graph; while on the right the rule

A → A,B;B → A,B is applied to yield a complete graph. Ovals and boxes are used to highlight

the layer structure: vertices within an oval do not have connections, while vertices within a box

connect to each other; an thick edge goes from one group to the other connects every vertex in one

group to all the vertices in the other group. The parameter mismatch pattern here is prescribed

to coincide with the type of vertices, which is, for the given ε: [−ε,−ε,−ε,+ε,+ε,+ε].

IV. SUMMARY

In this paper we analyze the synchronization stability for coupled near-identical oscil-

lator networks such as Eq. 1. We show that the master stability equations and functions

can be extended to this general case as to analyze the synchronization stability. The varia-

tional equations in the near-identical oscillator case highlight the relevance of eigenvectors as

well as eigenvalues on the effect of parameter mismatch, which indicates the importance of

knowledge of the detailed network structure in designing dynamical systems that are more

reliable.
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FIG. 5: (Color online) Validating MSF on sequence networks. Here the coupling strength is g = 2.

The parameter mismatch pattern is shown in Fig. 4. The vertical axis represents the average

variation at each given ε. (Blue) markers represent variations obtained from actual time series,

and (black) dashed lines is the prediction obtained by MSF. Here the MSF line for all three networks

are the same.
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that the trajectory solved from a single system ṡ = f(s, µ̄) could be used instead, resulting in

good approximation of Ω. The supporting work for proving the shadowability of w̄ by s will

be reported elsewhere.

[23] Notation < a(t) > is introduced and used throughout, to represent the asymptotic root mean

square:
√

limT→∞
1
T

∫ T
0 a(t)dt for the trajectory a(t).

[24] This transition matrix, as a function of two time variables t and τ , can be obtained by the

Peano-Baker series as long as Dwf − α ·DH is continuous. See [5], Ch.3.

15


	Introduction
	Theory: Master Stability Equations and Functions
	Derivation of Variational Equations
	Decomposition of the Variational Equations
	Extended Master Stability Equations and Functions
	Conditions for Stable Near Synchronization

	Examples of Application
	Methodology
	Example: Ring Graph
	Example: Sequence Networks
	Example: Scale-free Networks

	Summary
	Acknowledgments
	References

