Skip to main content

Synchronization Stability of Coupled Near-Identical Oscillator Network

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

To study the effect of parameter mismatch on the stability in a general fashion, we derive variational equations to analyze the stability of synchronization for coupled near-identical oscillators. We define master stability equations and associated master stability functions, which are independent of the network structure. In particular, we present several examples of coupled near-identical Lorenz systems configured in small networks (a ring graph and sequence networks) with a fixed parameter mismatch and a large Barabasi-Albert scale-free network with random parameter mismatch. We find that several different network architectures permit similar results despite various mismatch patterns. abstract environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lancaster, P., Tismenetsky, M.: The Theory of Matrices with Applications, 2nd edn. Academic Press, London (1985)

    MATH  Google Scholar 

  2. Pecora, L.M., Carroll, T.L.: Synchronization in Chaotic Systems. Phys. Rev. Lett. 64, 821 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cuomo, K.M., Oppenheim, A.V.O.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71, 65 (1993)

    Article  Google Scholar 

  4. Strogatz, S.H., Stewart, I.: Coupled oscillators and biological synchronization. Scientific American 269, 102 (1993)

    Article  Google Scholar 

  5. Rugh, W.J.: Linear System Theory, 2nd edn. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

  6. Venkataramani, S.C., Hunt, B.R., Ott, E.: Bubbling Transition. Phys. Rev. E 54, 1346 (1996)

    Article  Google Scholar 

  7. Venkataramani, S.C., Hunt, B.R., Ott, E., Gauthier, D.J., Bienfang, J.C.: Transition to Bubbling of Chaotic Systems. Phys. Rev. Lett. 77, 5361 (1996)

    Article  Google Scholar 

  8. Peroca, L.M., Carroll, T.L.: Master Stability Functions for Synchronized Coupled Systems. Phys. Rev. Lett. 80, 2109 (1998)

    Article  Google Scholar 

  9. Barabasi, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buono, P.L., Golubitsky, M.: Models of central pattern generators for quadruped locomotion: I. primary gaits. J. Math. Biol. 42, 291 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bocccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order. Hyperion, New York (2003)

    Google Scholar 

  14. He, D., Stone, L.: Spatio-temporal synchronization of recurrent epidemics. Proc. R. Soc. Lond. B 270, 1519 (2003)

    Google Scholar 

  15. Nishikawa, T., Motter, A.E., Lai, Y.-C., Hoppensteadt, F.C.: Heterogeneity in Oscillator Networks: Are Smaller Worlds Easier to Synchronize? Phys. Rev. Lett. 91, 014101 (2003)

    Article  Google Scholar 

  16. Li, X., Chen, G.: Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. IEEE Trans. on Circ. Syst. 50, 1381 (2003)

    Article  MathSciNet  Google Scholar 

  17. Restrepo, J.G., Ott, E., Hunt, B.R.: Spatial patterns of desynchronization bursts in networks. Phys. Rev. E 69, 066215 (2004)

    Article  MathSciNet  Google Scholar 

  18. Skufca, J.D., Bollt, E.M.: Communication and Synchronization in Disconnected Networks with Dynamic Topology Moving Neighborhood Networks. Mathematical Biosciences and Engineering 1, 347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stilwell, D.J., Bollt, E.M., Roberson, D.G.: Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies. SIAM J. Applied Dynamical Systems 5, 140 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Arenas, A., Diaz-Guilera, A., Perez-Vicente, C.J.: Synchronization Reveals Topological Scales in Complex Networks. Phys. Rev. Lett. 96, 114102 (2006)

    Article  Google Scholar 

  21. Sun, J., Nishikawa, T., ben-Avraham, D.: Sequence Nets. Phys. Rev. E 78, 026104 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Sun, J., Bollt, E.M., Nishikawa, T. (2009). Synchronization Stability of Coupled Near-Identical Oscillator Network. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_90

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics