Skip to main content

A New Genetic Algorithm for Community Detection

  • Conference paper
Complex Sciences (Complex 2009)

Included in the following conference series:

Abstract

With the rapidly grown evidence that various systems in nature and society can be modeled as complex networks, community detection in networks becomes a hot research topic in many research fields. This paper proposes a new genetic algorithm for community detection. The algorithm uses the fundamental measure criterion modularity Q as the fitness function. A special locus-based adjacency encoding scheme is applied to represent the community partition. The encoding scheme is suitable for the community detection based on the reason that it determines the community number automatically and reduces the search space distinctly. In addition, the corresponding crossover and mutation operators are designed. The experiments in three aspects show that the algorithm is effective, efficient and steady.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Watts, D.J., Strogatz, S.H.: Collective Dynamics of Small World’Netwoks. Nature 393, 440–442

    Google Scholar 

  2. Newman, M.E.J.: The Structure and Function of Complex Network. SIAM Review, 45, 167–256

    Google Scholar 

  3. Scott, J.: Social Network Analysis: A Handbook. Sage Publications, London (2002)

    Google Scholar 

  4. Milo, R., Itzkovitz, S., et al.: Network Motifs: Simple Building Blocks of Complex Networks. Science 298, 824–827

    Google Scholar 

  5. Danon, L., Diaaz-Guilera, A., Duch, J., Arenas, A.: Comparing Community Structure Identification. Journal of Statistical Mechanics: Theory and Experiments 9 (2005)

    Google Scholar 

  6. Newman, M.E.J.: Modularity and Community Structure in Networks. PNAS 103, 8577

    Google Scholar 

  7. Girvan, M., Newman, M.E.J.: Community Structure in Social and Biological Networks PNAS 99, 7821–7826

    Google Scholar 

  8. Han, J.W., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann publishers, San Francisco (2006)

    MATH  Google Scholar 

  9. Newman, M.E.J.: Fast Algorithm for Detecting Community Structure in Networks. Physical review E 69, 066133 (2004)

    Article  Google Scholar 

  10. Pothen, A., Sinmon, H., Liou, K.-P.: Partitioning Sparse Matrices with Eigenvectors of Graphs. SIAM J. Matrix Anal. App. 11, 430–452

    Google Scholar 

  11. Kernigham, B.W., Lin, S.: A Efficient Heuristic Procedure for Partitioning Graphs. Bell System Technical Journal 49, 291–307

    Google Scholar 

  12. Bron, C., Kerbosch, J.: Finding all Cliques of an Undirected Graph. Communications of the ACM 16, 575–577

    Google Scholar 

  13. Pei, J., JIang, D.X., Zhang, A.D., et al.: On Mining Cross-graph Quasi-cliques. In: Proc. The 12th ACM SIGKDD, Philadephia, pp. 228–237 (2006)

    Google Scholar 

  14. Zeng, Z., Wang, J., Karypis, G., et al.: Coherent Closed Quasi-Clique Discovery from Large Dense Graph DataBase. In: Proc. The 12th ACM SIGKDD, Philadephia, pp. 228–237 (2006)

    Google Scholar 

  15. http://www-personal.umich.edu/~mejn/netdata/

  16. Girvan, M., Newman, M.E.J.: Finding and Evaluating Community Structure in Networks. Physical Review E 69, 026113

    Google Scholar 

  17. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and Identifying Communities in Networks. PNAS 101, 2658

    Google Scholar 

  18. Clauset, A., Newman, M.E.J., Moore, C.: Finding Community Structure in Very Large Networks. Physical Review E 70, 066111

    Google Scholar 

  19. Reichardt, J., Bornholdt, S.: Statistical Mechanics of Community Detection. Physics Review E 74(1), 016110 (2006)

    Article  MathSciNet  Google Scholar 

  20. Arenas, A., Fernandez, A., Gomez, S.: Multiple Resolution of Modular Structure of Complex Networks. arXiv:physics/0703218v1 (2007)

    Google Scholar 

  21. Brandes, U., Delling, D., Gaetler, M., et al.: On Modularity Clustering. IEEE Transactions on Knowledge and Data Engineering 20(2), 172–188 (2008)

    Article  Google Scholar 

  22. Tasgin, M., Bingol, H.: Community Detection in Complex Networks using Genetic Algorithm, arXiv:cond-mat/0604419 (2006)

    Google Scholar 

  23. Duch, J., Arenas, A.: Community Detection in Complex Networks using Extremal Optimization. arXiv:cond-mat/0501368 (2005)

    Google Scholar 

  24. Fortunato, S., Barthelemy, M.: Resolution Limit in Community Detection. Proceedings of the National Academy of Sciences 104(1) (January 2007)

    Google Scholar 

  25. Arenas, A., Fernandez, A., Gomez, S.: Analysis of the Structure of Complex Networks at Different Resolution Levels, physics 0703218v2, January 15 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Shi, C., Wang, Y., Wu, B., Zhong, C. (2009). A New Genetic Algorithm for Community Detection. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02469-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02469-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02468-9

  • Online ISBN: 978-3-642-02469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics