Skip to main content

Framework for Visualisation of Cancer Tumours

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

This paper discusses the use of Fister-Panetta model in the visualisation of cancerous growths. Cancer evolution and the associated proper medication strategy is an example of such a complex problem that requires an interdisciplinary approach in order to be properly addressed. The paper addresses some basic aspects regarding how cancer research could benefit from the cooperation between mathematics and biology, describes how to model and visualize cancer tumor with recursive algorithms and Fister and Panetta pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooper, G.M.: The Cancer Book. Jones and Bartlett Publishers (1993) ISBN:0867207701

    Google Scholar 

  2. Denise, S., Marc, V., Robert, G.: Local modeling of global interactome networks. Advance access publication (2005)

    Google Scholar 

  3. Wilkinson, M.H.F.: Nonlinear Dynamics, Chaos-theory, and the ”Sciences of Complexity”: Their Relevance to the Study of the Interaction between Host and Microflora. Old Herborn University Seminar Monograph 10: New Antimicrobial Strategies, pp. 110–130 (1997)

    Google Scholar 

  4. Hunerbein, M., Ghadimi, B.M., Gretschel, S., Schlag, P.M.: Three-dimensional endoluminal ultrasound: a new method for the evaluation of gastrointestinal tumors, vol. 24, pp. 445–448. Springer, Heidelberg (1999)

    Google Scholar 

  5. Clem, A.J., Rigaut, J.P.: Computer simulation modelling and visualization of 3D architecture of biological tissues, vol. 43, pp. 425–442. Springer, Netherlands (1995)

    Google Scholar 

  6. West, G.B., Brown, J.H., Enquist, B.J.: A general model for ontogenetic growth. Nature (626) (2002)

    Google Scholar 

  7. Adriana, N., Mombach, J., Walter, M., Deavila, F.: The interplay between cell adhesion and environment rigidity in the morphology of tumors, vol. 322, pp. 546–554. Elsevier, Amsterdam (2003)

    Google Scholar 

  8. Stott, E.L., Britton, N.F.: Stochastic Simulation of Benign Avascular Tumour Growth Using the Potts Model, vol. 30, pp. 183–198. Elsevier, Amsterdam (1999)

    Google Scholar 

  9. Baish, J.W., Jain, R.K.: Fractals and Cancer, vol. 60, pp. 3683–3688. American Association for Cancer Research (2000)

    Google Scholar 

  10. Hartwell, L., et al.: From molecular to modular cell biology. Nature 402 (1999)

    Google Scholar 

  11. Kyungsook, H., Byong-Hyon, J.: A fast layout algorithm for prothein interaction networks, pp. 402–751. School of Computer Science and Engineering Inha University, Inchon (2003)

    Google Scholar 

  12. Deutsch, A., Brusch, L., Helen, et al.: Mathematical Modeling of Biological Systems. Birkhäuser, Boston (2007)

    Google Scholar 

  13. Dana, M.: Mathematical modeling and cancer, vol. 37. SIAM News, Philadelphia (2004)

    Google Scholar 

  14. Carmeliet, P.: Angiogenesis in health and disease. Nature Medicine 9, 653–670 (2003)

    Google Scholar 

  15. Jonsson, F., Pall, B.A., Paul: Global topological features of cancer proteins in the human interactome. Advance Access publication (2006)

    Google Scholar 

  16. Johnston, D., Matthew, E.M., Carina, B.F., Walter, M.K., Philip, C.S., Jonathan: Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. In: Proceedings of the National Academy of Sciences of the United States of America (2007)

    Google Scholar 

  17. Fister, R.K., Panetta, Carl, J.: Optimal control applied to competing chemotherapeutic cell-kill strategies. SIAM Journal of Applied Mathematics 63 (2003)

    Google Scholar 

  18. Murray, J.M.: Optimal control for a cancer chemotherapy problem with general growth and loss functions. Math. Biosci (1990)

    Google Scholar 

  19. Holford, N., Sheiner, L.: Pharmacokinetic and pharmacodynamic modeling in vivo, Number 5. CRC Crit. Rev. Bioeng (1981)

    Google Scholar 

  20. Scholtens, D., Vidal, M., Gentleman, R.: Local modeling of global interactome networks. Advance access publication (2005)

    Google Scholar 

  21. Fister, R.K., Panetta, J.C.: Optimal control applied to cell-cycle-specific chemotherapy. SIAM Journal of Applied Mathematics 60 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Chen, Y.J., Bocu, R., Tangney, M., Tabirca, S. (2009). Framework for Visualisation of Cancer Tumours. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02469-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02469-6_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02468-9

  • Online ISBN: 978-3-642-02469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics