Skip to main content

Visual Analysis of Complex Networks and Community Structure

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

Many real-world domains can be represented as complex networks.A good visualization of a large and complex network is worth more than millions of words. Visual depictions of networks, which exploit human visual processing, are more prone to cognition of the structure of such complex networks than the computational representation. We star by briefly introducing some key technologies of network visualization, such as graph drawing algorithm and community discovery methods. The typical tools for network visualization are also reviewed. A newly developed software framework JSNVA for network visual analysis is introduced. Finally,the applications of JSNVA in bibliometric analysis and mobile call graph analysis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barabási, A.-L.: Taming complexity. J. Nature Physics. 1, 68–70 (2005)

    Article  Google Scholar 

  2. Börner, K., Sanyal, S., Vespignani, A.: Network Science. In: Cronin, B. (ed.) Annual Review of Information Science & Technology, vol. 41, ch. 12, pp. 537–607. Information Today, Inc., American Society for Information Science and Technology, Medford (2007)

    Google Scholar 

  3. Ye, Q., Wu, B., Wang, B.: JSNVA: a Java Straight-line Drawing Framework for Network Visual Analysis. In: 4th International Conference on Advanced Data Mining and Application, pp. 667–674 (2008)

    Google Scholar 

  4. Thomas, J.J., Cook, K.A.: A Visual Analytics Agenda. IEEE Computer Graphics and Applications 26(1), 10–13 (2006)

    Article  Google Scholar 

  5. Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. J. Software Practice and Experience 21, 1129–1164 (1991)

    Article  Google Scholar 

  6. Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected graphs. In: International Symposium on Graph Drawing, pp. 388–403. Springer, Heidelberg (1994)

    Google Scholar 

  7. Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed layouts of large graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 211–221. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Gajer, P., Kobourov, S.G.: GRIP: Graph Drawing with Intelligent Placement. J. Graph Algorithms and Applications 6(3), 203–224 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 183–196. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. J. Information Processing Letters 31(5), 7–15 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koren, Y., Carmel, L., Harel, D.: ACE: AFast Multiscale Eigenvector Computation for Drawing Huge Graphs. J. Multiscale Modeling and Simulation 1(4), 645–673 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hachul, S., Jünger, M.: An experimental comparison of fast algorithms for drawing general large graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 235–250. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information visualization. In: ACM SIGCHI conference on Human factors in computing systems, pp. 421–430. ACM Press, New York (2005)

    Google Scholar 

  14. Assent, I., Krieger, R., Müler, E., Seidl, T.: VISA: Visual Subspace Clustering Analysis. J. ACM SIGKDD Explorations Special Issue on Visual Analytics 9(2), 5–12 (2007)

    Article  Google Scholar 

  15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Resuable Object-Oriented Sofrware. Addison-Wesley, Reading (1995)

    Google Scholar 

  16. Yee, K.P., Fisher, D., Dhamija, R., Hearst, M.: Animated Exploration of Dynamic Graphs with Radial Layout. In: IEEE International Conference on Information Visualization, pp. 43–50 (2001)

    Google Scholar 

  17. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. J. PNAS 12, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. J. Nature 435, 814–817 (2005)

    Article  Google Scholar 

  19. Cline, M.S., et al.: Integration of biological networks and gene expression data using Cytoscape. Nature Protocols 2, 2366–2382 (2007)

    Article  Google Scholar 

  20. Ye, Q., Zhu, T., Hu, D., Wu, B., Du, N., Wang, B.: Cell Phone Mini Challenge Award: Social Network Accuracy— Exploring Temporal Communication in Mobile Call Graphs. In: IEEE International Symposium on Visual Analytics Science and Technology, pp. 207–208 (2008)

    Google Scholar 

  21. Brin, S., Page, L.: The Anatomy of large-scale Hypertextual Web Search Engine. J. Computer Networks and ISDN Systems 30, 107–117 (1998)

    Article  Google Scholar 

  22. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  23. Newman, M.E.J.: Analysis of weighted networks. Physical Review E, 056131 (July 20, 2004), arXiv:cond-mat/0407503 v1

    Google Scholar 

  24. Jeffrey Heer, J., Agrawala, M.: Software Design Patterns for Information Visualization. IEEE Transactions on Visualization and Computer Graphics 12(5), 853–860 (2006)

    Article  Google Scholar 

  25. Network Workbench, http://nwb.slis.indiana.edu/

  26. Pajek, http://vlado.fmf.uni-lj.si/

  27. NetDraw, http://www.analytictech.com

  28. JUNG, http://jung.sourceforge.net

  29. netminer, http://www.netminer.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Wu, B. et al. (2009). Visual Analysis of Complex Networks and Community Structure. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02469-6_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02469-6_93

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02468-9

  • Online ISBN: 978-3-642-02469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics