Skip to main content

Ranking of Brain Tumour Classifiers Using a Bayesian Approach

  • Conference paper
Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN 2009)

Abstract

This study presents a ranking for classifers using a Bayesian perspective. This ranking framework is able to evaluate the performance of the models to be compared when they are inferred from different sets of data. It also takes into account the performance obtained on samples not used during the training of the classifiers. Besides, this ranking assigns a prior to each model based on a measure of similarity of the training data to a test case. An evaluation consisting of ranking brain tumour classifiers is presented. These multilayer perceptron classifiers are trained with 1H magnetic resonance spectroscopy (MRS) signals following a multiproject multicenter evaluation approach. We demonstrate that such a framework can be effectively applied to the real problem of selecting classifiers for brain tumour classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. González-Vélez, H., et al.: HealthAgents: Distributed multi-agent brain tumour diagnosis and prognosis. Applied Intelligence (in press, 2007), doi:10.1007/s10489-007-0085-8

    Google Scholar 

  2. Saez, C., et al.: A generic decision support system featuring an assembled view of predictive models for magnetic resonance and clinical data. In: ESMRMB 2008: 25th Annual Scientific Meeting, Springer, Heidelberg (2008)

    Google Scholar 

  3. MacKay, D.J.C.: Bayesian interpolation. Neural Computation 4, 415–447 (1992)

    Article  MATH  Google Scholar 

  4. Kass, R.E., Raftery, A.E.: Bayes factors. Journal of the American Statistical Association 90, 773–795 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mackay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  6. Liddle, A.R.: Information criteria for astrophysical model selection. MON.NOT.ROY.ASTRON.SOC.LETT. 377, L74 (2007)

    Google Scholar 

  7. García-Gómez, J.M., et al.: Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. Magnetic Resonance Materials in Physics, Biology and Medicine (2008) (Epub ahead of print)

    Google Scholar 

  8. Tate, A.R., et al.: Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed. 19, 411–434 (2006)

    Article  Google Scholar 

  9. INTERPRET Consortium: INTERPRET web site. Technical report, IST-1999-10310, EC (accessed March 23, 2009), http://azizu.uab.es/INTERPRET

  10. eTumour Consortium: eTumour: Web accessible MR Decision support system for brain tumour diagnosis and prognosis, incorporating in vivo and ex vivo genomic and metabolomic data. Technical report, FP6-2002-LIFESCIHEALTH 503094, VI framework programme, EC (accessed March 23, 2009), http://www.etumour.net

  11. van der Graaf, M., et al.: MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR Biomed. 21, 148–158 (2008)

    Article  Google Scholar 

  12. Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K.: WHO classification of tumours of the central nervous system. IARC Press, Lyon, France (2007)

    Google Scholar 

  13. Rumelhart, D., Hinton, G., Williams, R.: Learning representation by back-propagation errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  14. Neal, R.M.: Bayesian Learning for Neural Networks, 1st edn. Lecture Notes in Statistics. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  15. Ripley, B.D.: Statistical aspects of neural networks. In: Networks and Chaos: Statistical and Probabilistic Aspects, Chapman and Hall, Boca Raton (1993)

    Google Scholar 

  16. CBTRUS (2007): 2007-2008 statistical report: Primary brain tumors in the united states, 1998-2002. Technical report, Central Brain Tumor Registry of the United States (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vicente, J. et al. (2009). Ranking of Brain Tumour Classifiers Using a Bayesian Approach. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_126

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_126

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics