Skip to main content

Development of Neural Network Structure with Biological Mechanisms

  • Conference paper
Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5517))

Included in the following conference series:

Abstract

We present an evolving neural network model in which synapses appear and disappear stochastically according to bio-inspired probabilities. These are in general nonlinear functions of the local fields felt by neurons—akin to electrical stimulation—and of the global average field—representing total energy consumption. We find that initial degree distributions then evolve towards stationary states which can either be fairly homogeneous or highly heterogeneous, depending on parameters. The critical cases—which can result in scale-free distributions—are shown to correspond, under a mean-field approximation, to nonlinear drift-diffusion equations. We show how appropriate choices of parameters yield good quantitative agreement with published experimental data concerning synaptic densities during brain development (synaptic pruning).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  2. Amit, D.J.: Modeling Brain Function. Cambridge Univ. Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  3. Mejias, J.F., Torres, J.J.: The role of synaptic facilitation in coincidence spike detection. J. Comp. Neurosci. 24, 222–234 (2008)

    Article  Google Scholar 

  4. Johnson, S., Marro, J., Torres, J.J.: Functional optimization in complex excitable networks. EPL 83, 46006 (2008)

    Article  Google Scholar 

  5. Huttenlocher, P.R., Dabholkar, A.S.: Regional differences in synaptogenesis in human cerebral cortex. Joural of Comparative Neurology 387, 167–178 (1997)

    Article  Google Scholar 

  6. De Roo, M., Klauser, P., Mendez, P., Poglia, L., Muller, D.: Activity-dependent PSD formation and stabilization of newly formed spines in hippocampal slice cultures. Cerebral Cortex 18, 151–161 (2008)

    Article  Google Scholar 

  7. Klintsova, A.Y., Greenough, W.T.: Synaptic plasticity in cortical systems. Current Opinion in Neurobiology 9, 203–208 (1999)

    Article  Google Scholar 

  8. Chechik, G., Meilijson, I., Ruppin, E.: Synaptic pruning in development: A computational account. Neural Comput. 10(7), 1759–1777 (1998)

    Article  Google Scholar 

  9. Chechik, G., Meilijson, I., Ruppin, E.: Neuronal regulation: A mechanism for synaptic pruning during brain maturation. Neural Comp. 11(8), 2061–2080 (1999)

    Article  Google Scholar 

  10. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hebb, D.O.: The organization of behavior. Wiley, New York

    Google Scholar 

  12. Mejias, J.F., Torres, J.J.: Maximum memory capacity on neural networks with short-term synaptic depression and facilitation. Neural Comp. 21(3), 851–871 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Johnson, S., Marro, J., Torres, J.J.: Nonlinear preferential rewiring in fixed-size networks as a diffusion process (submitted)

    Google Scholar 

  15. Johnson, S., Marro, J., Torres, J.J.: A nonlinear evolving network model, and its application to brain development (submitted)

    Google Scholar 

  16. Eguíluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94, 018102 (2005)

    Article  Google Scholar 

  17. Zhou, C., Zemanova, L., Zamora, G., Hilgetag, C.C., Kurths, J.: Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett. 97, 238103 (2006)

    Article  Google Scholar 

  18. Kaiser, M., Martin, R., Andras, P., Young, M.P.: Simulation of robustness against lesions of cortical networks. Eur. J. Neurosci. 25 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johnson, S., Marro, J., Mejias, J.F., Torres, J.J. (2009). Development of Neural Network Structure with Biological Mechanisms. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics