Skip to main content

An Evolutionary Hierarchical Clustering Method with a Visual Validation Tool

  • Conference paper
Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN 2009)

Abstract

In this paper, we propose a novel hierarchical clustering method based on evolutionary strategies. This method leads to gene expression data analysis, and shows its effectiveness with regard to other clustering methods through cluster validity measures on the results. Additionally, a novel visual validation interactive tool is provided to carry out visual analytics among clusters of a dendrogram. This interactive tool is an alternative for the used validity measures. The method introduced here attempts to solve some of the problems faced by other hierarchical methods. Finally, the results of the experiments show that the method can be very effective in the cluster analysis on DNA microarray data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley Longman, Inc., Amsterdam (1989)

    MATH  Google Scholar 

  2. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, New York (1999)

    MATH  Google Scholar 

  3. Eisen, M., Spellman, T., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences, USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  4. Korte, B., Vygen, J.: DHC: A density-based hierarchical clustering method for time series gene expression data. In: Proceedings of the Third IEEE Symposium on BioInformatics and BioEngineering, BIBE (2003)

    Google Scholar 

  5. Ma, P.C.H., Chan, K.C.C., Yao, X., Chiu, D.K.Y.: An evolutionary clustering algorithm for gene expression microarray data analisys. IEEE Transactions on Evolutionary Computation 10, 296–314 (2006)

    Article  Google Scholar 

  6. Berrar, D.P., Dubitzky, W., Granzow, M.: A Practical Approach to Microarray Data Analysis. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  7. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  8. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: VIS 1990: Proceedings of the 1st conference on Visualization 1990, pp. 361–378 (1990)

    Google Scholar 

  9. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1998)

    MATH  Google Scholar 

  10. Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: A survey 16, 1370–1386 (2004)

    Google Scholar 

  11. Greene, W.A.: Unsupervised hierarchical clustering via a genetic algorithm. In: Congress on Evolutionary Computation, CEC 2003, vol. 2, pp. 998–1005. IEEE, Los Alamitos (2003)

    Google Scholar 

  12. Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-genomic data analysis, vol. 21, pp. 3201–3212. Oxford University Press, Oxford (2005)

    Google Scholar 

  13. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. In: An Introduction to Clustering Analysis, John Wiley & Sons, Inc., Hoboken (2005)

    Google Scholar 

  14. Chipman, H., Hastie, T., Tibshirani, R.: Clustering microarray data. Statistical Analysis of Gene Expression Microarray Data (2003)

    Google Scholar 

  15. Sorlie, T., et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. PNAS 98, 10969–10974 (2001)

    Article  Google Scholar 

  16. Chipman, H., Tibshirani, R.: Hybrid hierarchical clustering with applications to microarray data. Biostatistics 7, 302–317 (2006)

    MATH  Google Scholar 

  17. Macnaughton-Smith, P., Williams, W.T., Dale, M.B., Mockett, L.G.: Dissimilarity analysis: a new technique of hierarchical subdivision. Nature 202, 1034–1035 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castellanos-Garzón, J.A., García, C.A., Miguel-Quintales, L.A. (2009). An Evolutionary Hierarchical Clustering Method with a Visual Validation Tool. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics