Skip to main content

Evolutionary Genetic Algorithms in a Constraint Satisfaction Problem: Puzzle Eternity II

  • Conference paper
Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5517))

Included in the following conference series:

Abstract

This paper evaluates a genetic algorithm and a multiobjective evolutionary algorithm in a constraint satisfaction problem (CSP). The problem that has been chosen is the Eternity II puzzle (E2), an edge-matching puzzle. The objective is to analyze the results and the convergence of both algorithms in a problem that is not purely multiobjective but that can be split into multiple related objectives. For the genetic algorithm two different fitness functions will be used, the first one as the score of the puzzle and the second one as a combination of the multiobjective algorithm objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tomy: Eternity II (official site) (November 2008), http://www.eternityii.com

  2. Demaine, E., Demaine, M.: Jigsaw Puzzles, Edge Matching, and Polyomino Packing: Connections and Complexity. Graphs and Combinatorics 23, 195–208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco (2003)

    MATH  Google Scholar 

  4. Raman, V., Ravikumar, B., Rao, S.: A simplified NP-complete MAXSAT problem. Information Processing Letters 65(1), 1–6 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rana, S., Whitley, D.: Genetic algorithm behavior in the MAXSAT domain. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 785–794. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Kumar, V.: Algorithms for Constraint-Satisfaction Problems: A Survey. AI Magazine 13(1), 32–44 (1992)

    Google Scholar 

  7. Pierre Schaus, Y.D.: Hybridization of CP and VLNS for Eternity II. JFPC (2008)

    Google Scholar 

  8. Gottlieb, J., Marchiori, E., Rossi, C.: Evolutionary Algorithms for the Satisfiability Problem. Evolutionary Computation 10(1), 35–50 (2002)

    Article  Google Scholar 

  9. Bäck, T., Eiben, A., Vink, M.: A Superior Evolutionary Algorithm for 3-SAT. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 125–136. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Eiben, A., van der Hauw, J.: Solving 3-SAT with adaptive Genetic Algorithms. In: Proceedings of the 4th IEEE Conference on Evolutionary Computation, pp. 81–86 (1997)

    Google Scholar 

  11. Gottlieb, J., Voss, N.: Improving the performance of evolutionary algorithms for the satisfiability problem by refining functions. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 755–764. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Gottlieb, J., Voss: Adaptive fitness functions for the satisfiability problem. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 621–630. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Marchiori, E., Rossi, C.: A flipping genetic algorithm for hard 3-SAT problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1, pp. 459–465 (1999)

    Google Scholar 

  14. Rossi, C., Marchiori, E., Kok, J.: An adaptive evolutionary algorithm for the satisfiability problem. In: Proceedings of the 2000 ACM symposium on Applied computing, vol. 1, pp. 463–469 (2000)

    Google Scholar 

  15. Haralick, R.M., Elliott, G.: Increasing Tree Search Efficiency for Constraint Satisfaction Problems. Artificial Intelligence 14(3), 263–313 (1980)

    Article  Google Scholar 

  16. Craenen, B., Eiben, A., van Hemert, J.: Comparing evolutionary algorithms on binary constraint satisfaction problems. IEEE Transactions on Evolutionary Computation 7(5), 424–444 (2003)

    Article  Google Scholar 

  17. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muñoz, J., Gutierrez, G., Sanchis, A. (2009). Evolutionary Genetic Algorithms in a Constraint Satisfaction Problem: Puzzle Eternity II. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_90

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics