Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5518))

Included in the following conference series:

Abstract

The major objective of metabolic engineering is the construction of industrially relevant microbial strains with desired properties. From an engineering perspective, dynamic mathematical modeling to quantitatively assess intracellular metabolism and predict the complex behavior of living cells is one of the most successful tools to achieve that goal. In this work, we present an expansion of the original E. coli dynamic model [1], which links the acetate metabolism and tricarboxylic acid cycle (TCA) with the phosphotransferase systems, the pentose-phosphate pathway and the glycolysis system based on mechanistic enzymatic rate equations. The kinetic information is collected from available database and literature, and is used as an initial guess for the global fitting. The results of the numeric simulations were in good agreement with the experimental results. Thus, the results are sufficiently good to prompt us to seek further experimental data for comparison with the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chassagnole, C., Noisommit-Rizzi, N., Schmid, J.W., Mauch, K., Reuss, M.: Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnology and Bioengineering 79, 53–73 (2002)

    Article  Google Scholar 

  2. Dairaku, K., Izumoto, E., Morikawa, H., Shioya, S., Takamatsu, T.: Optimal quality control of Baker’s yeast fed-batch culture using population dynamics. Biotechnol. Bioeng. 24, 2661–2674 (1982)

    Article  Google Scholar 

  3. Blanch, H.W.: Microbial growth kinetics. Chem. Eng. Commun. 8, 181–211 (1981)

    Article  Google Scholar 

  4. Gombert, A.K., Nielsen, J.: Mathematical modelling of metabolism. Current Opinion in Biotechnology 11, 180–186 (2000)

    Article  Google Scholar 

  5. Varner, J.D.: Large-scale prediction of phenotype: Concept. Biotechnology and Bioengineering 69, 664–678 (2000)

    Article  Google Scholar 

  6. Chassagnole, C., Rais, B., Quentin, E., Fell, D.A., Mazat, J.P.: An integrated study of threonine-pathway enzyme kinetics in Escherichia coli. Biochemical Journal 356, 415–423 (2001)

    Article  Google Scholar 

  7. Wittig, U., Golebiewski, M., Kania, R., Krebs, O., Mir, S., Weidemann, A., Ansteins, S., Saric, J., Rojas, I.: SABIO-RK: Integration and curation of reaction kinetic data. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 94–103. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Sundararaj, S., Guo, A., Habibi-Nazhad, B., Rouani, M., Stothard, P., Ellison, M., Wishart, D.S.: The CyberCell Database (CCDB): a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of Escherichia coli. Nucleic Acids Research 32, D293–D295 (2004)

    Article  Google Scholar 

  9. Bakker, B.M., Michels, P.A.M., Opperdoes, F.R., Westerhoff, H.V.: Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. Journal of Biological Chemistry 272, 3207–3215 (1997)

    Article  Google Scholar 

  10. Henkin, J., Abeles, R.H.: Evidence against an Acyl-enzyme intermediate in reaction catalyzed by Clostridial phosphotransacetylase. Biochemistry 15, 3472–3479 (1976)

    Article  Google Scholar 

  11. Karp, P., Riley, M., Saier, M., Paulsen, I.T., Paley, S.M., Pellegrini-Toole, A.: The EcoCyc and MetaCyc databases. Nucleic Acids Research 28, 56–59 (2000)

    Article  Google Scholar 

  12. Zhao, J., Shimizu, K.: Metabolic flux analysis of Escherichia coli K12 grown on C-13-labeled acetate and glucose using GG-MS and powerful flux calculation method. Journal of Biotechnology 101, 101–117 (2003)

    Article  Google Scholar 

  13. Tian, J., Bryk, R., Itoh, M., Suematsu, M., Nathan, C.: Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: Identification of alpha-ketoglutarate decarboxylase. Proceedings of the National Academy of Sciences of the United States of America 102, 10670–10675 (2005)

    Article  Google Scholar 

  14. Hoefnagel, M.H.N., Starrenburg, M.J.C., Martens, D.E., Hugenholtz, J., Kleerebezem, M., Van Swam, I.I., Bongers, R., Westerhoff, H.V., Snoep, J.L.: Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology-Sgm 148, 1003–1013 (2002)

    Article  Google Scholar 

  15. Walsh, K., Koshland, D.E.: Branch Point Control by the Phosphorylation State of Isocitrate Dehydrogenase - A Quantitative Examination of Fluxes During A Regulatory Transition. Journal of Biological Chemistry 260, 8430–8437 (1985)

    Google Scholar 

  16. Schomburg, I., Chang, A., Schomburg, D.: BRENDA, enzyme data and metabolic information. Nucleic Acids Research 30, 47–49 (2002)

    Article  Google Scholar 

  17. Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P.Y., Kakazu, Y., Sugawara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi, T., Hasegawa, M., Takai, Y., Yugi, K., Arakawa, K., Iwata, N., Toya, Y., Nakayama, Y., Nishioka, T., Shimizu, K., Mori, H., Tomita, M.: Multiple high-throughput analyses monitor the response of E-coli to perturbations. Science 316, 593–597 (2007)

    Article  Google Scholar 

  18. Hoque, M.A., Ushiyama, H., Tomita, M., Shimizu, K.: Dynamic responses of the intracellular metabolite concentrations of the wild type and pykA mutant Escherichia coli against pulse addition of glucose or NH3 under those limiting continuous cultures. Biochemical Engineering Journal 26, 38–49 (2005)

    Article  Google Scholar 

  19. Goldberg, R.N., Tewari, Y.B., Bhat, T.N.: Thermodynamics of enzyme-catalyzed reactions - a database for quantitative biochemistry. Bioinformatics 20, 2874–2877 (2004)

    Article  Google Scholar 

  20. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI — a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costa, R.S., Machado, D., Rocha, I., Ferreira, E.C. (2009). Large Scale Dynamic Model Reconstruction for the Central Carbon Metabolism of Escherichia coli . In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_163

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02481-8_163

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02480-1

  • Online ISBN: 978-3-642-02481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics