Abstract
A novel variant of a multi-objective particle swarm optimization algorithm is reported. The proposed multi-objective particle swarm optimization algorithm is based on the maximin technique previously proposed for a multi-objective genetic algorithm. The technique is applied to optimize two types of problems: firth to a set of benchmark functions and second to the design of PID controllers regarding the classical design objectives of set-point tracking and output disturbance rejection.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization (2001)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948. IEEE Service Center, Piscataway (1995)
Reyes-Sierra, M., Coello, C.A.C.: Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research (IJCIR) 2(3), 287–308 (2006)
Solteiro Pires, E.J., de Moura Oliveira, P.B., Tenreiro Machado, J.A.: Multi-objective MaxiMin Sorting Scheme. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 165–175. Springer, Heidelberg (2005)
de Moura Oliveira, P.B., Boaventura Cunha, J., Coelho, J.P.: Design of PID controllers using the particle swarm algorithm. In: IASTED – MIC, 21st International Conference in Modelling, Innsbruck, Austria, February 18-21, pp. 263–268 (2002)
Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress of Evolutionary Computation, Mayflower Hotel, Washington D.C., USA, July 6-9, vol. 3, pp. 1945–1950. IEEE Press, Los Alamitos (1999)
Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, USA, pp. 26–33 (April 2003)
Fieldsend, J., Singh, S.: A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and turbulence. In: Proc. of UK Workshop on Computational Intelligence (UKCI 2002), Birmingham, UK, September 2-4, pp. 37–44 (2002)
Zitzler, E., Kalyanmoy, D., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)
Abido, M.A.: Two-level of nondominated solutions approach to multiobjective particle swarm optimization. In: GECCO 2007, Genetic and Evolutionary Compuation Conference, London, England, United Kingdom, July 7-11 (2007)
Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Master’s thesis, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, Cambridge, Massachusetts (May 1995)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Moura Oliveira, P.B., Pires, E.J.S., Cunha, J.B., Vrančić, D. (2009). Multi-Objective Particle Swarm Optimization Design of PID Controllers. In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_183
Download citation
DOI: https://doi.org/10.1007/978-3-642-02481-8_183
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02480-1
Online ISBN: 978-3-642-02481-8
eBook Packages: Computer ScienceComputer Science (R0)