Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5518))

Included in the following conference series:

  • 2021 Accesses

Abstract

In this work, a parallel version of the evolutionary algorithm called UEGO (Universal Evolutionary Global Optimizer) has been implemented and evaluated on shared memory architectures. It is based on a threaded programming model, which is suitable to be run on current personal computers with multicore processors.

This work has been funded by grants from the Spanish Ministry of Science and Innovation (TIN2008-01117) and Junta de Andalucía (P06-TIC-01426, P08-TIC-3518), in part financed by the European Regional Development Fund (ERDF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Redondo, J., Fernández, J., García, I., Ortigosa, P.: A robust and efficient global optimization algorithm for planar competitive location problems. Annals of Operations Research 167, 87–106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Redondo, J., Fernández, J., García, I., Ortigosa, P.: Solving the multiple competitive location and design problem on the plane. Evolutionary Computation 17(1), 21–53 (2009)

    Article  Google Scholar 

  3. Redondo, J., Fernández, J., García, I., Ortigosa, P.: Heuristics for the facility location and design (1|1)-centroid problem on the plane. Computational Optimizations and Applications (2007) (to appear), doi:10.1007/s10589-008-9170-0

    Google Scholar 

  4. Redondo, J., Fernández, J., García, I., Ortigosa, P.: Parallel algorithms for continuous competitive location problems. Optimization Methods & Software 23(5), 779–791 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jelásity, M., Ortigosa, P., García, I.: UEGO, an abstract clustering technique for multimodal global optimization. Journal of Heuristics 7(3), 215–233 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Redondo, J.L., García, I., Martínez Ortigosa, P. (2009). Universal Global Optimization Algorithm on Shared Memory Multiprocessors. In: Omatu, S., et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living. IWANN 2009. Lecture Notes in Computer Science, vol 5518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02481-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02481-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02480-1

  • Online ISBN: 978-3-642-02481-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics