Skip to main content

Modelling Climate Change Effects on Wine Quality Based on Expert Opinions Expressed in Free-Text Format: The WEBSOM Approach

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5506))

Included in the following conference series:

  • 2199 Accesses

Abstract

The motivation for modelling the effects of climate change on viticulture and wine quality using both quantitative and qualitative data within an integrated analytical framework is described. The constraints and solutions evident when taking such an approach are outlined. WEBSOM is a novel self-organising map (SOM) method for extracting relevant domain-dependent characteristics from web based texts and in this case, investigated for modelling wine quality resulting from climate variation, by web text mining published descriptions made by sommeliers about this phenomenon. This paper describes experiments using the WEBSOM method with their results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jones, G.V., White, M.A., Cooper, O.R., Storchmann, K.-H.: Climate and Wine: Quality Issues in a Warmer World. In: Proceedings of the Vineyard Data Quantification Society’s 10th Eonometrics Meeting, Dijon, France (2004)

    Google Scholar 

  2. Hansen, A., Dale, V.: Biodiversity in US Forests under Global Climate Change. Ecosystems 4, 161–163 (2001)

    Article  Google Scholar 

  3. Sallis, P.J., Shanmuganathan, S., Pavesi, L., Jarur, M.: A system architecture for collaborative environmental modelling research. In: Samari, W.W., McQuay, W. (eds.) The 2008 International Symposium on Collaborative Technologies and Systems (CTS 2008), Irvine, California, pp. 39–47. IEEE, New Jersey (2008)

    Chapter  Google Scholar 

  4. Shanmuganathan, S., Sallis, P.J., Pavesi, L., Jarur, M.: Computational intelligence and geo-informatics in viticulture. In: Al-Dabass, D., Turner, S., Tan, G., Abraham, A. (eds.) Proceedings of the Second Asia International Conference on Modelling & Simulation, Kuala Lumpur, Malaysia, pp. 480–485. IEEE computer society, Los Alamitos (2008) (CD version)

    Google Scholar 

  5. Wine enthusiast magazine, http://www.winemag.com/buyingguide/search.asp?db=

  6. Lagus, K., Honkela, T., Kaski, S., Kohonen, T.: WEBSOM - A Status Report. In: Alander, J., Honkela, T., Jakobsson, M. (eds.) Proceedings of STeP 1996, pp. 73–78. Publications of the Finnish Artificial Intelligence Society (1996)

    Google Scholar 

  7. Atkins, T.A., Morgan, E.R.: Modelling the effects of possible climate change scenarios on the phenology of New Zealand fruit crops ISHS Acta Horticulturae 276. In: II International Symposium on Computer Modelling in Fruit Research and Orchard Management,

    Google Scholar 

  8. Webb, L.B.: The impact of projected greenhouse gas-induced climate change on the Australian wine industry, PhD thesis, School of Agriculture and Food Systems, University of Melbourne, p. 277 (2006)

    Google Scholar 

  9. Gutierrez, A.P., Luigi, P., Ellis, C.K., d’Oultremont, T.: Analysis of climate effects on agricultural systems. Report published by California Climate Change Center CEC-500-2005-188-SD, pp. 28 + appendices A1-7 (2005)

    Google Scholar 

  10. Parr, W.V., Green, J.A., White, K.G., Sherlock, R.R.: The distinctive flavour of New Zealand Sauvignon blanc: Sensory characterisation by wine professionals. Food Quality and Preference 18, 849–861 (2007)

    Article  Google Scholar 

  11. Kontkanen, D., Reynolds, A.G., Cliff, M.A., King, M.: Canadian terroir: sensory characterization of Bordeaux-style red wine varieties in the Niagara Peninsula. Food Research International 38, 417–425 (2005)

    Article  Google Scholar 

  12. Vannier, A., Bruna, O.X., Feinberg, M.H.: Food Quality and Preference, vol. 10, pp. 101–107 (1999)

    Google Scholar 

  13. Gawel, R., Iland, P.G., Francis, I.L.: Characterizing the astringency of red wine: a case study. Food Quality and Preference 12, 83–94 (2001)

    Google Scholar 

  14. Jones, G.V., White, M.A., Cooper, O.R., Storchmann, K.: Climate and Global Wine Quality. Climatic Change by Springer 73, 319–343 (2005)

    Article  Google Scholar 

  15. Nemani, R.R., White, M.A., Cayan, D.R., Jones, G.V., Running, S.W., Coughlan, J.C.: Asymmetric climatic warming improves California vintages. Clim. Res. 19, 25–34 (2001)

    Article  Google Scholar 

  16. Ashenfelter, O., Jones, G.V.: The demand for expert opinion: BordeauxWine. In: VDQSAnnual Meeting, d’Ajaccio, Corsica, France, October 1998. Cahiers Scientifique from the Observatoire des Conjonctures Vinicoles Europeenes, Faculte des Sciences Economiques, Espace Richter, Ave. de La Mer, BP 9606, 34054 Montpellier Cedex 1, France (2000)

    Google Scholar 

  17. Brochet, F., Dubourdieu, D.: Wine Descriptive Language Supports Cognitive Specificity of Chemical Senses. Brain and Language 77, 187–196 (2001)

    Article  Google Scholar 

  18. Valentin, D.: Wine language and expertise level: A cognitive point of view. In: Proceeding of Bacchus at Brock, the third international interdisciplinary wine conference, St. Catharine, June 7-9, 11 p. (2007)

    Google Scholar 

  19. Bećue-Bertaut, M., Aĺvarez-Esteban, R., PageÅ›, J.: Food Quality and Preference 19, 122–134 (2008)

    Google Scholar 

  20. Frøst, M.B., Noble, A.: Preliminary study of the effect of knowledge and sensory expertise on liking for red wines. American Journal of Enology and Viticulture 53(4), 275–284 (2002)

    Google Scholar 

  21. Lagus, K., Honkela, T., Kaski, S., Kohonen, T.: In: Alander, J., Honkela, T., Jakobsson, M. (eds.) Proceedings of STeP 1996, pp. 73–78. Publications of the Finnish Artificial Intelligence Society (1996)

    Google Scholar 

  22. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: Creating an order in digital libraries with self-organizing maps. In: Proceedings of World Congress on Neural Networks, WCNN-1996 (1996)

    Google Scholar 

  23. Honkela, T., Kaski, S., Lagus, K., Kohonen, T.: Newsgroup exploration with WEBSOM method and browsing interface. Technical Report A32, Helsinki University of Technology, Laboratory of Computer and Information Science, Espoo. WEBSOM home page (1996), websom.hut.fi/websom/

  24. Lagus, K., Kaski, S., Honkela, T., Kohonen, T.: Browsing digital libraries with the aid of self-organizing maps. In: Hopgood, B. (ed.) Proc. of Fifth International World Wide Web Conference, Paris, vol. posters, pp. 71–79 (1996)

    Google Scholar 

  25. Lagus, K., Honkela, T., Kaski, S., Kohonen, T.: Self-organizing maps of document collections: A new approach to interactive exploration. In: Proceeding of Knowledge Discovery and Data Mining, KDD 1996 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shanmuganathan, S., Sallis, P. (2009). Modelling Climate Change Effects on Wine Quality Based on Expert Opinions Expressed in Free-Text Format: The WEBSOM Approach. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02490-0_112

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02490-0_112

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02489-4

  • Online ISBN: 978-3-642-02490-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics