Skip to main content

Improved Mass Spectrometry Peak Intensity Prediction by Adaptive Feature Weighting

  • Conference paper
Advances in Neuro-Information Processing (ICONIP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5506))

Included in the following conference series:

  • 1613 Accesses

Abstract

Mass spectrometry (MS) is a key technique for the analysis and identification of proteins. A prediction of spectrum peak intensities from pre computed molecular features would pave the way to a better understanding of spectrometry data and improved spectrum evaluation. The goal is to model the relationship between peptides and peptide peak heights in MALDI-TOF mass spectra, only using the peptide’s sequence information and the chemical properties. To cope with this high dimensional data, we propose a regression based combination of feature weightings and a linear predictor to focus on relevant features. This offers simpler models, scalability, and better generalization. We show that the overall performance utilizing the estimation of feature relevance and re-training compared to using the entire feature space can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shadforth, I., Crowther, D., Bessant, C.: Protein and peptide identification algorithms using MS for use in high-throughput, automated pipelines. Proteomics 5(16), 4082–4095 (2005)

    Article  Google Scholar 

  2. Elias, J.E., Gibbons, F.D., King, O.D., Roth, F.P., Gygi, S.P.: Intensity-based protein identification by machine learning from a library of tandem mass spectra. Nat. Biotechnol. 22(2), 214–219 (2004)

    Article  Google Scholar 

  3. Gay, S., Binz, P.A., Hochstrasser, D.F., Appel, R.D.: Peptide mass fingerprinting peak intensity prediction: extracting knowledge from spectra. Proteomics 2(10), 1374–1391 (2002)

    Article  Google Scholar 

  4. Tang, H., et al.: A computational approach toward label-free protein quantification using predicted peptide detectability. Bioinformatics 22(14), 481 (2006)

    Article  Google Scholar 

  5. Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artificial Intelligence 97(1-2), 245–271 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  7. Ritter, H.: Learning with the self-organizing map. In: Kohonen, T., et al. (eds.) Artificial Neural Networks, pp. 379–384. Elsevier Science Publishers, Amsterdam (1991)

    Google Scholar 

  8. Timm, W., Böcker, S., Twellmann, T., Nattkemper, T.W.: Peak intensity prediction for pmf mass spectra using support vector regression. In: Proc. of the 7th International FLINS Conference on Applied Artificial Intelligence (2006)

    Google Scholar 

  9. Kawashima, S., Ogata, H., Kanehisa, M.: AAindex: Amino Acid Index Database. Nucleic Acids Res. 27(1), 368–369 (1999)

    Article  Google Scholar 

  10. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Stat. Comp., Austria (2008) ISBN 3-900051-07-0

    Google Scholar 

  11. Kuhn, M.: caret: Classification and Regression Training, R package v. 3.16 (2008)

    Google Scholar 

  12. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)

    Google Scholar 

  13. Kohonen, T.: Self-organized formation of topologically correct feature maps. In: Biological Cybernetics, vol. 43, pp. 59–69 (1982)

    Google Scholar 

  14. Cleveland, W.S., Devlin, S.J.: Locally-weighted regression: An approach to regression analysis by local fitting. J. of the American Stat. Assoc. 83, 596–610 (1988)

    Article  MATH  Google Scholar 

  15. Millington, P.J., Baker, W.L.: Associative reinforcement learning for optimal control. In: Proc. Conf. on AIAA Guid. Nav. and Cont., vol. 2, pp. 1120–1128 (1990)

    Google Scholar 

  16. Scherbart, A., Timm, W., Böcker, S., Nattkemper, T.W.: Som-based peptide prototyping for mass spectrometry peak intensity prediction. In: WSOM 2007 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scherbart, A., Timm, W., Böcker, S., Nattkemper, T.W. (2009). Improved Mass Spectrometry Peak Intensity Prediction by Adaptive Feature Weighting. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02490-0_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02490-0_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02489-4

  • Online ISBN: 978-3-642-02490-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics