Abstract
Many recent single-shell high angular resolution diffusion imaging reconstruction techniques have been introduced to reconstruct orientation distribution functions (ODF) that only capture angular information contained in the diffusion process of water molecules. By also considering the radial part of the diffusion signal, the reconstruction of the ensemble average diffusion propagator (EAP) of water molecules can provide much richer information about complex tissue microstructure than the ODF. In this paper, we present diffusion propagator imaging (DPI), a novel technique to reconstruct the EAP from multiple shell acquisitions. The DPI solution is analytical and linear because it is based on a Laplace equation modeling of the diffusion signal. DPI is validated with ex vivo phantoms and also illustrated on an in vivo human brain dataset. DPI is shown to reconstruct EAP from only two b-value shells and approximately 100 diffusion measurements.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cohen, Y., Assaf, Y.: High b-value q-space analyzed diffusion-weighted mrs and mri in neuronal tissues - a technical review. NMR Biomed. 15, 516–542 (2002)
Tuch, D.S.: Diffusion MRI of Complex Tissue Structure. PhD thesis, Massachusetts Institute of Technology (2002)
Callaghan, P.T.: Principles of nuclear magnetic resonance microscopy. Oxford University Press, Oxford (1991)
Basser, P., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the nmr spin echo. J. Magn. Reson. B 103(3), 247–254 (1994)
Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)
Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-gaussian diffusion by using generalized diffusion tensors. Magn. Reson. Med. 51, 924–937 (2004)
Assaf, Y., Freidlin, R.Z., Rohde, G.K., Basser, P.J.: New modeling and experimental framework to characterize hindered and restrcited water diffusion in brain white matter. Magn. Reson. Med. 52, 965–978 (2004)
Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: The quantification of non- gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53, 1432–1440 (2005)
Özarslan, E., Shepherd, T., Vemuri, B., Blackband, S., Mareci, T.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (dot). NeuroImage 31(3), 1086–1103 (2006)
Pickalov, V., Basser, P.: 3-D tomographic reconstruction of the average propagator from MRI data. In: IEEE ISBI, pp. 710–713 (2006)
Wu, Y.C., Alexander, A.L.: Hybrid diffusion imaging. NeuroImage 36, 617–629 (2007)
Barmpoutis, A., Vemuri, B.C., Forder, J.R.: Fast displacement probability profile approximation from hardi using 4th-order tensors. In: IEEE ISBI, pp. 911–914 (2008)
Poupon, C., Rieul, B., Kezele, I., Perrin, M., Poupon, F., cois Mangin, J.F.: New diffusion phantoms dedicated to the study and validation of hardi models. Magn. Reson. Med. 60, 1276–1283 (2008)
Hess, C., Mukherjee, P., Han, E., Xu, D., Vigneron, D.: Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn. Reson. Med. 56, 104–117 (2006)
Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion mri: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)
Assemlal, H.E., Tschumperlé, D., Brun, L.: Efficient computation of pdf-based characteristics from diffusion mr signal. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 70–78. Springer, Heidelberg (2008)
Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magn. Reson. Med. 58(3), 497–510 (2007)
Özarslan, E., Koay, C.G., Basser, P.J.: Simple harmonic oscillator based estimation and reconstruction for one-dimensional q-space mr. In: ISMRM, p. 35 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, JF., Poupon, C. (2009). Diffusion Propagator Imaging: Using Laplace’s Equation and Multiple Shell Acquisitions to Reconstruct the Diffusion Propagator. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-02498-6_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02497-9
Online ISBN: 978-3-642-02498-6
eBook Packages: Computer ScienceComputer Science (R0)