Abstract
We present a technique for automatic intensity-based image-to-physical registration of a 3-D segmentation for image-guided interventions. The registration aligns the segmentation with tracked and calibrated 3-D ultrasound (US) images of the target region. The technique uses a probabilistic framework and explicitly incorporates a model of the US image acquisition process. The rigid body registration parameters are varied to maximise the likelihood that the real US image(s) were formed using the US imaging model from the probe transducer position. The proposed technique is validated on images segmented from cardiac magnetic resonance imaging (MRI) data and 3-D US images acquired from 3 volunteers and 1 patient. We show that the accuracy of the algorithm is 2.6-4.2mm and the capture range is 9-18mm. The proposed technique has the potential to provide accurate image-to-physical registrations for a range of image guidance applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Roche, A., Pennec, X., Malandain, G., Ayache, N.: Rigid registration of 3D ultrasound with MR images: A new approach combining intensity and gradient information. IEEE Transactions on Medical Imaging 20, 1038–1049 (2001)
Leroy, A., Mozer, P., Payan, Y., Troccaz, J.: Rigid registration of freehand 3D ultrasound and CT-scan kidney images. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 837–844. Springer, Heidelberg (2004)
Penney, G.P., Blackall, J.M., Hamady, M.S., Sabharwal, T., Adam, A., Hawkes, D.J.: Registration of freehand 3D ultrasound and magnetic resonance liver images. Medical Image Analysis 8, 81–91 (2004)
Huang, X., Hill, N.A., Ren, J., Peters, T.M.: Rapid registration of multimodal images using a reduced number of voxels. In: Proceedings SPIE Medical Imaging, vol. 6141 (2006)
Wein, W., Brunke, S., Khamene, A., Callstrom, M.R., Navab, N.: Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Medical Image Analysis 12, 577–585 (2008)
Cardinal, M.R., Meunier, J., Soulez, G., Maurice, R.L., Therasse, E., Cloutier, G.: Intravascular ultrasound image segmentation: A three-dimensional fast-marching method based on gray level distributions. IEEE Transactions on Medical Imaging 25(5), 590–601 (2006)
Shams, R., Hartley, R., Navab, N.: Real-time simulation of medical ultrasound from CT images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 734–741. Springer, Heidelberg (2008)
Zhuang, X., Hawkes, D.J., Crum, W.R., Boubertakh, R., Uribe, S., Atkinson, D., Batchelor, P., Schaeffter, T., Razavi, R., Hill, D.L.G.: Robust registration between cardiac MRI images and atlas for segmentation propagation. In: Proceedings SPIE Medical Imaging (2008)
Maurer Jr., C., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2), 265–269 (2003)
Webb, S. (ed.): The Physics of Medical Imaging. Institute of Physics Publishing (1988)
Sanches, J.M., Marques, J.S.: Compensation of log-compressed images for 3-d ultrasound. Ultrasound in Medicine and Biology 29(2), 239–253 (2003)
Dias, J.M.B., Leitão, J.M.N.: Wall position and thickness estimation from sequences of echocardiographic images. IEEE Transactions on Medical Imaging 15(1), 25–38 (1996)
Nillesen, M.M., Lopata, R.G.P., Gerrits, I.H., Kapusta, L., Thussen, J.M., de Korte, C.L.: Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images. Ultrasound in Medicine and Biology 34(4), 674–680 (2008)
Tao, Z., Tagare, H.D., Beaty, J.D.: Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images. IEEE Transactions on Medical Imaging 25(11), 1483–1492 (2006)
Goldstein, A., Madrazo, B.: Slice-thickness artifacts in gray-scale ultrasound. J. Clin. Ultrasound 9, 365–375 (1981)
Feng, D.D.: Biomedical Information Technology. Academic Press, London (2008)
Ma, Y.L., Rhode, K.S., Gao, G., King, A.P., Chinchapatnam, P., Schaeffter, T., Hawkes, D.J., Razavi, R., Penney, G.P.: Ultrasound calibration using intensity-based image registration: For application in cardiac catheterization procedures. In: Proceedings SPIE Medical Imaging (2008)
Grau, V., Becher, H., Noble, A.: Registration of multiview real-time 3-D echocardiographic sequences. IEEE Transactions on Medical Imaging 26(9), 1154–1165 (2007)
Rhode, K.S., Hill, D.L.G., Edwards, P.J., Hipwell, J., Rueckert, D., Sanchez-Ortiz, G., Hegde, S., Rahunathan, V., Razavi, R.: Registration and tracking to integrate X-ray and MR images in an XMR facility. IEEE Transactions on Medical Imaging 22(11), 1369–1378 (2003)
Ma, Y.L., Rhode, K.S., King, A.P., Cauldfield, D., Cooklin, M., Razavi, R., Penney, G.P.: Echocardiography to magnetic resonance image registration for use in image-guided electrophysiology procedures. In: Proceedings SPIE Medical Imaging (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
King, A.P. et al. (2009). Image-to-Physical Registration for Image-Guided Interventions Using 3-D Ultrasound and an Ultrasound Imaging Model. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-02498-6_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02497-9
Online ISBN: 978-3-642-02498-6
eBook Packages: Computer ScienceComputer Science (R0)