Abstract
We report on a new framework to investigate the rapid brain development of newborns. It is based on the analysis of depth maps of the cortical surface through the study of a displacement field estimated by surfacic optical flow methods. This displacement field shows local evolution of sulci directly on the cortical surface. Detection of its critical points is performed with the Helmholtz decomposition which allows us to identify sources of the developmental process. They can be viewed as growth seeds or in other terms points around which the sulcal growth organizes itself. We show the reproducibility of such growth seeds across 4 neonates and make a link of this new concept to the ”sulcal roots” one proposed to explain the variability of human brain anatomy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)
Cachia, A., Mangin, J.F., Riviere, D., Kherif, F., Boddaert, N., Andrade, A., Papadopoulos-Orfanos, D., Poline, J.B., Bloch, I., Zilbovicius, M., Sonigo, P., Brunelle, F., Regis, J.: A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns. IEEE Trans. Medical Imaging 22(6), 754–765 (2003)
Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic feature based registration: the pasha algorithm. Computer Vision and Image Understanding 89(2-3), 272–298 (2003)
Dubois, J., Benders, M., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R., Sizonenko, S.V., Borradori-Tolsa, C., Mangin, J.F., Huppi, P.S.: Mapping the Early Cortical Folding Process in the Preterm Newborn Brain. Cerebral Cortex 18(6), 1444–1454 (2008)
Grenander, U., Srivastava, A., Saini, S.: A Pattern-Theoretic Characterization of Biological Growth. IEEE Transactions on Medical Imaging 26(5), 648–659 (2007)
Guo, Q., Mandal, M.K., Liu, G., Kavanagh, K.M.: Cardiac video analysis using Hodge–Helmholtz field decomposition. Computers in Biology and Medicine 36(1), 1–20 (2006)
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)
Lefèvre, J., Baillet, S.: Optical Flow and Advection on 2-Riemannian Manifolds: A Common Framework. IEEE Transactions on pattern analysis and machine intelligence, 1081–1092 (2008)
Lefèvre, J., Obozinski, G., Baillet, S.: Imaging brain activation streams from optical flow computation on 2-riemannian manifolds. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 470–481. Springer, Heidelberg (2007)
Leroy, F., Mangin, J.F., Rousseau, F., Glasel, H., Hertz-Pannier, L., Dubois, J., Dehaene-Lambertz, G.: Cortical Surface Segmentation in Infants by Coupled Surfaces Deformation across Feature Field. In: Imaging the Early Developing Brain: Challenges and Potential Impact, Workshop at MICCAI (2008)
Lohmann, G., von Cramon, D.Y., Colchester, A.C.F.: Deep sulcal landmarks provide an organizing framework for human cortical folding. Cerebral Cortex 18(6), 1415–1420 (2008)
Polthier, K., Preuss, E.: Identifying vector fields singularities using a discrete hodge decomposition. Visualization and Mathematics 3, 113–134 (2003)
Régis, J., Mangin, J.F., Ochiai, T., Frouin, V., Riviére, D., Cachia, A., Tamura, M., Samson, Y.: ”Sulcal Root” Generic Model: a Hypothesis to Overcome the Variability of the Human Cortex Folding Patterns. Neurologia medico-chirurgica 45(1), 1–17 (2005)
Richman, D.P., Stewart, R.M., Hutchinson, J.W., Caviness Jr., V.S.: Mechanical Model of Brain Convolutional Development. Science 189(4196), 18–21 (1975)
Toro, R., Burnod, Y.: A Morphogenetic Model for the Development of Cortical Convolutions. Cerebral Cortex 15(12), 1900–1913 (2005)
Van Essen, D.C.: A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614), 313–318 (1997)
Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A.D., Rueckert, D., Hajnal, J.V.: Automatic cortical segmentation in the developing brain. Inf. Process. Med. Imaging 20, 257–269 (2007)
Xue, H., Srinivasan, L., Jiang, S., Rutherford, M.A., Edwards, A.D., Rueckert, D., Hajnal, J.V.: Longitudinal Cortical Registration for Developing Neonates. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 127–135. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lefèvre, J. et al. (2009). Identification of Growth Seeds in the Neonate Brain through Surfacic Helmholtz Decomposition. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-02498-6_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02497-9
Online ISBN: 978-3-642-02498-6
eBook Packages: Computer ScienceComputer Science (R0)