Abstract
In this paper, we employ an anatomical parameterization of spatial warps to reveal structural differences between medical images of healthy control subjects and disease patients. The warps are represented as structure-specific 9-parameter affine transformations, which constitute a global, non-rigid mapping between the atlas and image coordinates. Our method estimates the structure-specific transformation parameters directly from medical scans by minimizing a Kullback-Leibler divergence measure. The resulting parameters are then input to a linear Support Vector Machine classifier, which assigns individual scans to a specific clinical group. The classifier also enables us to interpret the anatomical differences between groups, as we can visualize the discriminative warp that best differentiates the two groups. We test the accuracy of our approach on a data set consisting of Magnetic Resonance scans from 16 first episode schizophrenics and 17 age-matched healthy control subjects. The data set also contains manual labels for four regions of interest in both hemispheres: superior temporal gyrus, amygdala, hippocampus, and para-hippocampal gyrus. On this small size data set, our approach, which performs classification based on the MR images directly, yields a leave-one-out cross-validation accuracy of up to 90%. This compares favorably with the accuracy achieved by state-of-the-art techniques in schizophrenia MRI research.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shenton, M., Dickey, C., Frumin, M., McCarley, R.: A review of MRI findings in schizophrenia. Schizophrenia Research 49(1-2), 1–52 (2001)
Golland, P., Grimson, W., Kikinis, R.: Statistical shape analysis using fixed topology skeletons: Corpus callosum study. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 382–387. Springer, Heidelberg (1999)
Styner, M., Lieberman, J.A., Pantazis, D., Gerig, G.: Boundary and medial shape analysis of the hippocampus in schizophrenia. Medical Image Analysis 8(3), 197–203 (2004)
Davatzikos, C., Shen, D., Gur, R.C., Wu, X., Liu, D., Fan, Y., Hughett, P., Turetsky, B.I., Gur, R.E.: Whole-brain morphometric study of schizophrenia reveals a spatially complex set of focal abnormalities. Archives of General Psychiatry 62, 1218–1227 (2005)
Lao, Z., Shena, D., Xuea, Z., Karacalia, B., Resnickb, S.M., Davatzikos, C.: Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage 21, 46–57 (2004)
Liu, Y., Teverovskiy, L., Carmichael, O., Kikinis, R., Shenton, M., Carter, C., Stenger, V.A., Davis, S., Aizenstein, H., Becker, J., Lopez, O., Meltzer, C.: Discriminative MR image feature analysis for automatic schizophrenia and alzheimer’s disease classification. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 393–401. Springer, Heidelberg (2004)
Pruessner, J., Li, L., Serles, W., Pruessner, M., Collins, D., Kabani, N., Lupien, S., Evans, A.: Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: Minimizing the discrepencies between laboratories. Cerebral Cortex 10, 433–442 (2000)
Fan, Y., Shen, D., Davatzikos, C.: Classification of structural images via high-dimensional image warping, robust feature extraction, and SVM. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 1–8. Springer, Heidelberg (2005)
Ashburner, J., Friston, K.: Voxel-based morphometry - the methods. NeuroImage 11, 805–821 (2000)
Volz, H., Gaser, C., Sauer, H.: Supporting evidence for the model of cognitive dysmetria in schizophreniaa structural magnetic resonance imaging study using deformation-based morphometry. Schizophrenia Research 46, 45–56 (2000)
Davatzikos, C., Genc, A., Xu, D., Resnick, S.: Voxel-based morphometry using the ravens maps: methods and validation using simulated longitudinal atrophy. NeuroImage 14, 1361–1369 (2001)
Shen, D., Davatzikos, C.: Hammer: Hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging 21, 1421–1439 (2002)
Narr, K.L., Bilder, R.M., Toga, A.W., Woods, R.P., Rex, D.E., Szeszko, P.R., Robinson, D., Sevy, S., Gunduz-Bruce, H., Wang, Y.P., DeLuca, H., Thompson, P.M.: Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cerebral Cortex 15(6), 708–719 (2005)
Ashburner, J., Friston, K.: Unified segmentation. NeuroImage 26(3), 839–851 (2005)
Pohl, K.M., Fisher, J., Grimson, W., Kikinis, R., Wells, W.: A Bayesian model for joint segmentation and registration. NeuroImage 31(1), 228–239 (2006)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1999)
Hirayasu, Y., Shenton, M.E., Salisbury, D., Dickey, C., Fischer, I.A., Mazzoni, P., Kisler, T., Arakaki, H., Kwon, J.S., Anderson, J.E., Yurgelun-Todd, D., Tohen, M., McCarley, R.W.: Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. The American Journal of Psychiatry 155(10), 1384–1391 (1998)
Kullback, S., Leibler, R.: On information and sufficiency. The Annals of Mathematical Statistics 22, 79–86 (1951)
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging 18(10), 885–895 (1999)
Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 20(1), 45–57 (2001)
Pohl, K., Bouix, S., Nakamura, M., Rohlfing, T., McCarley, R., Kikinis, R., Grimson, W., Shenton, M., Wells, W.: A hierarchical algorithm for MR brain image parcellation. IEEE Transactions on Medical Imaging 26(9), 1201–1212 (2007)
Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: A convergence study. Computer Vision and Image Understanding 77(2), 192–210 (1999)
Lorenzen, P., Prastawa, M., Davis, B., Gerig, G., Bullitt, E., Joshi, S.: Multi-modal image set registration and atlas formation. Medical Image Analysis 10(3), 440–451 (2006)
Zöllei, L., Shenton, M., Wells, W., Pohl, K.: The impact of atlas formation methods on atlas-guided brain segmentation, statistical registration. In: Pair-wise and Group-wise Alignment and Atlas Formation Workshop at MICCAI 2007: Medical Image Computing and Computer-Assisted Intervention, pp. 39–46 (2007)
Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)
Rohlfing, T., Maurer Jr., C.R.: Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Transactions on Information Technology in Biomedicine 7(1), 16–25 (2003)
Bengio, Y., Grandvalet, Y.: No unbiased estimator of the variance of k-fold cross-validation. Journal of Machine Learning Research (5), 1089–1105 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pohl, K.M., Sabuncu, M.R. (2009). A Unified Framework for MR Based Disease Classification. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-02498-6_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02497-9
Online ISBN: 978-3-642-02498-6
eBook Packages: Computer ScienceComputer Science (R0)