Skip to main content

HARDI Denoising: Variational Regularization of the Spherical Apparent Diffusion Coefficient sADC

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

We denoise HARDI (High Angular Resolution Diffusion Imaging) data arising in medical imaging. Diffusion imaging is a relatively new and powerful method to measure the 3D profile of water diffusion at each point. This can be used to reconstruct fiber directions and pathways in the living brain, providing detailed maps of fiber integrity and connectivity. HARDI is a powerful new extension of diffusion imaging, which goes beyond the diffusion tensor imaging (DTI) model: mathematically, intensity data is given at every voxel and at any direction on the sphere. However, HARDI data is usually highly contaminated with noise, depending on the b-value which is a tuning parameter pre-selected to collect the data. Larger b-values help to collect more accurate information in terms of measuring diffusivity, but more noise is generated by many factors as well. So large b-values are preferred, if we can satisfactorily reduce the noise without losing the data structure. We propose a variational method to denoise HARDI data by denoising the spherical Apparent Diffusion Coefficient (sADC), a field of radial functions derived from the data. We use vectorial total variation regularization, an L 1 data fidelity term and the logarithmic barrier function in the minimization. We present experiments of denoising synthetic and real HARDI data.

Funded by the NIH Roadmap for Medical Research Grant U54 RR021813 (CCB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alliney, S.: Digital Filters as Absolute Norm Regularizers. IEEE TSP 40(6), 1548–1562 (1992)

    Google Scholar 

  2. Barmpoutis, A., Jian, B., Vemuri, B.C., Shepherd, T.M.: Symmetric positive 4th order tensors & their estimation from diffusion weighted MRI. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 308–319. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. JMR 111, 209–219 (1996)

    Google Scholar 

  4. Beaulieu, C., Allen, P.S.: Water diffusion in the giant axon of the squid: Implications for diffusion-weighted MRI of the nervous system. MRM 32(5), 579–583 (1994)

    Article  Google Scholar 

  5. Blomgren, P.: Total Variation Methods for Restoration of Vector Valued Images (Ph.D. thesis), UCLA CAM Report 98-30 (1998)

    Google Scholar 

  6. Blomgren, P., Chan, T.F.: Color TV: Total variation methods for restoration of vector-valued images. IEEE TIP 7(3), 304–309 (1998)

    Google Scholar 

  7. Jonasson, L., Hagmann, P., Bresson, X., Thiran, J.-P., Wedeen, V.J.: Representing Diffusion MRI in 5D for Segmentation of White Matter Tracts with a Level Set Method. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 311–320. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Chiang, M.C., Klunder, A.D., McMahon, K., de Zubicaray, G.I., Wright, M., Toga, A.W., Thompson, P.M.: Information-theoretic analysis of brain white matter fiber orientation distribution functions. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 172–182. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Chiang, M.C., Leow, A.D., Dutton, R.A., Barysheva, M., Rose, S., McMahon, K.L., de Zubicaray, G.I., Toga, A.W., Thompson, P.M.: Fluid Registration of Diffusion Tensor Images Using Information Theory. IEEE TMI 2008 27(4), 442–456 (2008)

    Google Scholar 

  10. Cihangiroglu, M., UluÄŸ, A.M., Firat, Z., Bayram, A., Kovanlikaya, A., Kovanlikaya, Ä°.: High b-value diffusion-weighted MR imaging of normal brain at 3T. European Journal of Radiology 69(3), 454–458 (2009)

    Article  Google Scholar 

  11. Deputte, S., Dierckx, H., Fieremans, E., D’Asseler, Y., Achten, R., Lemahieu, I.: Postprocessing of brain white matter fiber orientation distribution functions. In: Proc. IEEE ISBI: from Nano to Macro, pp. 784–787 (2007)

    Google Scholar 

  12. Descoteaux, M., Deriche, R.: High Angular Resolution Diffusion MRI Segmentation Using Region-Based Statistical Surface Evolution. JMIV 33(2), 239–252 (2009)

    Article  MathSciNet  Google Scholar 

  13. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, Fast and Robust Analytical Q-Ball Imaging. MRM 58(3), 497–510 (2007)

    Article  Google Scholar 

  14. Descoteaux, M., Deriche, R.: Mapping neuronal fiber crossings in the human brain. SPIE Newsroom (August 2008)

    Google Scholar 

  15. Frank, L.R.: Characterization of anisotropy in high angular resolution diffusion-weighted MRI. MRM 47(6), 1083–1099 (2002)

    Article  Google Scholar 

  16. Haro, G., Lenglet, C., Sapiro, G., Thompson, P.M.: On the Non-Uniform Complexity of Brain Connectivity. In: IEEE ISBI: from Nano to Macro, pp. 887–890 (2008)

    Google Scholar 

  17. Jian, B., Vemuri, B.C.: A Unified Computational Framework for Deconvolution to Reconstruct Multiple Fibers From Diffusion Weighted MRI. IEEE TMI 26(11), 1464–1471 (2007)

    Google Scholar 

  18. Jian, B., Vemuri, B.C., Özarslan, E., Carney, P.R., Mareci, T.H.: A novel tensor distribution model for the diffusion-weighted MR signal. NeuroImage 37(1), 164–176 (2007)

    Article  Google Scholar 

  19. Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. MRM 42, 515–525 (1999)

    Article  Google Scholar 

  20. Le Bihan, D., Breton, E.: Imagerie de diffusion in vivo par resonance magnétique nucléaire. CRAS 301, 1109–1112 (1985)

    Google Scholar 

  21. Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M.: MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986)

    Article  Google Scholar 

  22. Le Bihan, D., Poupon, C., Amadon, A., Lethimonnier, F.: Artifacts and Pitfalls in Diffusion MRI. JMRI 24, 478–488 (2006)

    Article  Google Scholar 

  23. Lenglet, C., Campbell, J.S.W., Descoteaux, M., Haro, G., Savadjiev, P., Wassermann, D., Anwander, A., Deriche, R., Pike, G.B., Sapiro, G., Siddiqi, K., Thompson, P.M.: Mathematical Methods for Diffusion MRI Processing. NeuroImage. In: Thompson, P.M., Miller, M.I., Poldrack, R., Nichols, T. (eds.) Special Issue on Mathematics in Brain Imaging, November 13 (2008)

    Google Scholar 

  24. Leow, A.D., Zhu, S., Zhan, L., McMahon, K., de Zubicaray, G.I., Meredith, M., Wright, M.J., Toga, A.W., Thompson, P.M.: The Tensor Distribution Function. MRM 61(1), 205–214 (2008)

    Article  Google Scholar 

  25. McGraw, T., Özarslan, E., Vemuri, B.C., Chen, Y., Mareci, T.: Denoising and visualization of HARDI data. REP-2005-360, CISE, Univ. of Florida (2005)

    Google Scholar 

  26. McGraw, T., Vemuri, B.C., Yezierski, B., Mareci, T.: Segmentation of High Angular Resolution Diffusion MRI Modeled as a Field of von Mises-Fisher Mixtures. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 463–475. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. McGraw, T., Vemuri, B.C., Yezierski, B., Mareci, T.: von Mises-Fisher Mixture model of the diffusion ODF. In: ISBI 2006: From Nano to Macro, pp. 65–68 (2006)

    Google Scholar 

  28. Merboldt, M., Hanicke, W., Frahm, J.: Self-diffusion NMR imaging using stimulated echoes. JMR 64, 479–486 (1985)

    Google Scholar 

  29. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  30. Özarslan, E., Vemuri, B.C., Mareci, T.H.: Generalized scalar measures for diffusion MRI using trace, variance and entropy. MRM 53(4), 866–876 (2005)

    Article  Google Scholar 

  31. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Srivastava, A., Jermyn, I., Joshi, S.: Riemannian Analysis of Probability Density Functions with Application in Vision. In: IEEE CVPR, pp. 1–8 (2007)

    Google Scholar 

  33. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. Journal of Chemical Physics 42, 288–292 (1965)

    Article  Google Scholar 

  34. Tschumperlé, D.: PDE-Based Regularization of Multivalued Images and Applications. PhD Thesis Univ. of Nice-Sophia Antipolis, France (2002)

    Google Scholar 

  35. Tschumperlé, D., Deriche, R.: Anisotropic Diffusion Partial Differential Equations in Multi-Channel Image Processing: Framework and Applications. In: Book chapter in Advances in Imaging and Electron Physics (AIEP). Academic Press, London (2007)

    Google Scholar 

  36. Tschumperlé, D., Deriche, R.: Vector-Valued Image Regularization with PDE’s: A Common Framework for Different Applications. IEEE TPAMI 27(4), 506–517 (2005)

    Article  Google Scholar 

  37. Tuch, D.S.: Diffusion MRI of Complex Tissue Structure. Ph. D. Thesis, Harvard-MIT Division of Health Sciences and Technology (2002)

    Google Scholar 

  38. Tuch, D.S., Weisskoff, R.M., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging of the human brain. In: Proc. 7th Annual Meeting of ISMRM, Philadelphia, PA, p. 321 (1999)

    Google Scholar 

  39. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. MRM 48, 577–582 (2002)

    Article  Google Scholar 

  40. Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex neural architecture. Neuron 40, 885–895 (2003)

    Article  Google Scholar 

  41. Tuch, D.S.: Q-ball imaging. MRM 52, 1358–1372 (2004)

    Article  Google Scholar 

  42. Verma, R., Khurd, P., Davatzikos, C.: On Analyzing Diffusion Tensor Images by Identifying Manifold Structure Using Isomaps. IEEE TMI 26(6), 772–778 (2007)

    Google Scholar 

  43. Wedeen, V.J., Hagmann, P., Tseng, W.Y., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54(6), 1377–1386 (2005)

    Article  Google Scholar 

  44. Zhan, L., Chiang, M.C., Barysheva, M., Toga, A.W., McMahon, K.L., de Zubicaray, G.I., Meredith, M., Wright, M.J., Thompson, P.M.: How Many Gradients are Sufficient in High-Angular Resolution Diffusion Imaging (HARDI)? In: MICCAI 2008, MICCAI DTI Workshop (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, Y., Thompson, P.M., Toga, A.W., Vese, L., Zhan, L. (2009). HARDI Denoising: Variational Regularization of the Spherical Apparent Diffusion Coefficient sADC . In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics