Skip to main content

The 3D Moore-Rayleigh Test for the Quantitative Groupwise Comparison of MR Brain Images

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Abstract

Non-rigid registration of MR images to a common reference image results in deformation fields, from which anatomical differences can be statistically assessed, within and between populations. Without further assumptions, nonparametric tests are required and currently the analysis of deformation fields is performed by permutation tests. For deformation fields, often the vector magnitude is chosen as test statistic, resulting in a loss of information. In this paper, we consider the three dimensional Moore-Rayleigh test as an alternative for permutation tests. This nonparametric test offers two novel features: first, it incorporates both the directions and magnitude of the deformation vectors. Second, as its distribution function is available in closed form, this test statistic can be used in a clinical setting. Using synthetic data that represents variations as commonly encountered in clinical data, we show that the Moore-Rayleigh test outperforms the classical permutation test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Driehuys, B., Nouls, J., Badea, A., Bucholz, E., Ghaghada, K., Petiet, A., Hedlund, L.W.: Small animal imaging with magnetic resonance microscopy. ILAR Journal 49, 35–53 (2008)

    Article  Google Scholar 

  2. Benveniste, H., Blackband, S.: MR microscopy and high resolution small animal MRI: applications in neuroscience research. Progress in Neurobiology 67, 393–420 (2002)

    Article  Google Scholar 

  3. Kovacević, N., Henderson, J.T., Chan, E., Lifshitz, N., Bishop, J., Evans, A.C., Henkelman, R.M., Chen, X.J.: A Three-dimensional MRI Atlas of the Mouse Brain with Estimates of the Average and Variability. Cerebral Cortex 15, 639–645 (2005)

    Article  Google Scholar 

  4. Pohl, K.M., Fisher, J., Bouix, S., Shenton, M., McCarley, R.W., Grimson, W.E.L., Ron Kikinis, R., Wells, W.M.: Using the logarithm of odds to define a vector space on probabilistic atlases. Medical Image Analysis 11, 465–477 (2007)

    Article  Google Scholar 

  5. Nichols, T.E., Holmes, A.P.: Nonparametric Permutation Tests For Functional Neuroimaging: A Primer with Examples. Human Brain Mapping 15, 1–25 (2001)

    Article  Google Scholar 

  6. Ferrarini, L., Palm, W.M., Olofson, H., van Buchem, M.A., Reiber, J.H.C., Admiraal-Behloul, F.: Shape differences of the brain ventricles in Alzheimer’s disease. NeuroImage 32, 1060–1069 (2006)

    Article  Google Scholar 

  7. Chen, X.J., Kovacevic, N., Lobaugh, N.J., Sled, J.G., Henkelman, R.M., Henderson, J.T.: Neuroanatomical differences between mouse strains as shown by high-resolution 3D MRI. Neuroimage 29, 99–105 (2005)

    Article  Google Scholar 

  8. Heckel, D., Arndt, S., Cizadlo, T., Andreasen, N.C.: An efficient procedure for permutation tests in imaging research. Computers and Biomedical Research 31, 164–171 (1998)

    Article  Google Scholar 

  9. Rorden, C., Bonilha, L., Nichols, T.E.: Rank-Order versus mean based statistics for neuroimaging. NeuroImage 35, 1531–1537 (2007)

    Article  Google Scholar 

  10. Moore, B.R.: A modification of the Rayleigh test for vector data. Biometrika 67, 175–180 (1980)

    Google Scholar 

  11. Dutka, J.: On the problem of random flights. Archive for History of Exact Sciences 32, 351–375 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aki, S.: On nonparametric tests for symmetry in \(\mathcal{R}^m\). Annals of the Institute of Statistical Mathematics 45, 787–800 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ngatchou-Wandji, J.: Testing for symmetry in multivariate distributions. Statistical Methodology (in press)

    Google Scholar 

  14. Henze, N., Klar, B., Meintanis, S.G.: Invariant tests for symmetry about an unspecified point based on the empirical characteristic function. Journal of Multivariate Analysis 87, 275–297 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fernández, V.A., Gamero, M.D.J., García, J.M.: A test for the two-sample problem based on empirical characteristic functions. Computational Statistics & Data Analysis 52, 3730–3748 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Diks, C., Tong, H.: A test for symmetries of multivariate probability distributions. Biometrika 86, 605–614 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jupp, P.E.: A nonparametric correlation coefficient and a two-sample test for random vectors or directions. Biometrika 74, 887–890 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 2, 243–260 (1998)

    Article  Google Scholar 

  19. Yoo, T.S., Ackerman, M.J., Lorensen, W.E., Schroeder, W., Chalana, V., Aylward, S., Metaxes, D., Whitaker, R.: Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK - The Insight Toolkit. In: Proc. of Medicine Meets Virtual Reality, pp. 586–592 (2002)

    Google Scholar 

  20. Mann, H.B., Whitney, D.R.: On a test of whether one of 2 random variables is stochastically larger than the other. The Annals of Mathematical Statistics 18, 50–60 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  21. Siegel, S., Castellan, N.J.: Nonparametric Statistics for the Behavioural Sciences, 2nd edn. McGraw-Hill, New York (1988)

    Google Scholar 

  22. Shaffer, J.P.: Multiple Hypothesis Testing. Annual Review of Psychology 46, 561–584 (1995)

    Article  Google Scholar 

  23. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18, 712–721 (1999)

    Article  Google Scholar 

  24. Staring, M.: Intrasubject Registration for Change Analysis in Medical Imaging. PhD thesis, Utrecht University, The Netherlands (2008), http://elastix.isi.uu.nl ISBN 978-90-8891-063-0

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scheenstra, A.E.H. et al. (2009). The 3D Moore-Rayleigh Test for the Quantitative Groupwise Comparison of MR Brain Images. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics