Skip to main content

Simultaneous Consideration of Spatial Deformation and Tensor Orientation in Diffusion Tensor Image Registration Using Local Fast Marching Patterns

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

Diffusion tensor imaging (DTI) plays increasingly important roles in surgical planning, neurological disease diagnosis, and follow-up studies in recent years. In order to compare the tractography obtained from different subjects or the same subject at different timepoints, a key step is to spatially align DTI images. Different from scalar or multi-channel image registration, tensor orientation should be considered in DTI registration. Several DTI registration methods have been proposed before, and some of them are based on first extracting the orientation-invariant features and then registering images using traditional scalar or multi-channel registration techniques followed by tensor reorientation. They essentially do not fully use the tensor information. Other methods such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms use analytical gradients of the registration objective functions by considering the reorientation of tensor during the registration. However, only local tensor information such as voxel tensor similarity is utilized in these algorithms, which can be regarded as a counterpart of the traditional intensity similarity-based image registration in the DTI case. This paper proposes a novel DTI image registration algorithm, called fast marching-based simultaneous registration. It not only considers the orientation of tensors but also utilizes the neighborhood tensor information of each voxel, which is extracted from a local fast marching algorithm around voxels of interest. Compared to the voxel-wise tensor similarity-based registration, richer and more distinctive tensor features are used in this algorithm to better define correspondences between DTI images. Thus, more robust and accurate registration results can be obtained. In the experiments, comparative results using the real DTI data show the advantages of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, D., Gee, J.C., Bajcsy, R.: Similarity measures for matching diffusion tensor images. In: BMVC, pp. 93–102 (1999)

    Google Scholar 

  2. Corouge, I., Fletcher, P.T., Joshi, S., Gilmore, J.H., Gerig, G.: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 131–139. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Assaf, Y., Pasternak, O.: Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J. Mol. Neurosci. 34(1), 51–61 (2008)

    Article  Google Scholar 

  4. Shen, D., Davatzikos, C.: HAMMER: Hierarchical Attribute Matching Mechanism for Elastic Registration. IEEE Trans. on Medical Imaging 21(11), 1421–1439 (2002)

    Article  Google Scholar 

  5. Rueckert, D., Sonoda, L.I., Hayes, D., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  6. Pollari, M., Neuvonen, T., Ltjnen, J.: Affine registration of diffusion tensor MR images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 629–636. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Van Hecke, W., Leemans, A., D’Agostino, E., De Backer, S., Vandervliet, E., Parizel, P.M., Sijbers, J.: Nonrigid coregistration of diffusion tensor images using a viscous fluid model and mutual information. IEEE Trans. Med. Imaging 26(11), 1598–1612 (2007)

    Article  Google Scholar 

  8. Xu, D., Mori, S., Shen, D., van Zijl, P.C.M., Davatzikos, C.: Spatial Normalization of Diffusion Tensor Fields. Magnetic Resonance in Medicine 50, 175–182 (2003)

    Article  Google Scholar 

  9. Yang, J., Shen, D., Davatzikos, C., Verma, R.: Diffusion tensor image registration using tensor geometry and orientation features. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 905–913. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Irfanoglu, M.O., Machiraju, R., Sammet, S., Pierpaoli, C., Knopp, M.V.: Automatic deformable diffusion tensor registration for fiber population analysis. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1014–1022. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Ziyan, U., Sabuncu, M.R., O’Donnell, L.J., Westin, C.F.: Nonlinear registration of diffusion MR images based on fiber bundles. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 351–358. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Chiang, M.C., Leow, A.D., Klunder, A.D., Dutton, R.A., Barysheva, M., Rose, S.E., McMahon, K.L., de Zubicaray, G.I., Toga, A.W., Thompson, P.M.: Fluid Registration of Diffusion Tensor Images Using Information Theory. Med. Img. 27(4), 442–456 (2008)

    Article  Google Scholar 

  13. Hagmann, P., Jonasson, L., Maeder, P., Thiran, J.P., Wedeen, V.J., Meuli, R.: Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics, 205–223 (2006)

    Google Scholar 

  14. Jones, D.K., Griffin, L.D., Alexander, D.C., Catani, M., Horsfield, M.A., Howard, R., Williams, S.C.: Spatial normalization and averaging of diffusion tensor MRI data sets. Neuroimage 17(2), 592–617 (2002)

    Article  Google Scholar 

  15. Zhang, H., Yushkevich, P.A., Gee, J.C.: Registration of Diffusion Tensor Images. In: CVPR, pp. 842–847 (2004)

    Google Scholar 

  16. Zhang, H., Yushkevich, P.Z., Alexander, D.C., Gee, J.C.: Deformable registration of diffusion tensor MR images with explicit orientation optimization. Medical Image Analysis 10(5), 764–785 (2006)

    Article  Google Scholar 

  17. Yeo, B.T.T., Vercauteren, T., Fillard, P., Pennec, X., Golland, P., Ayache, N., Clatz, O.: DTI Registration with Finite-Strain Differential. In: ISBI, pp. 700–703 (2008)

    Google Scholar 

  18. Zhang, H., Avants, B.B., Yushkevich, P.A., Woo, J.H., Wang, S., McCluskey, L.F., Elman, L.B., Melhem, E.R., Gee, J.C.: High-dimensional spatial normalization of diffusion tensor images improves the detection of white matter differences: an example study using amyotrophic lateral sclerosis. IEEE Trans. Med. Imaging 26(11), 1585–1597 (2007)

    Article  Google Scholar 

  19. Staempfli, P., Jaermann, T., Crelier, G.R., Kollias, S., Valavanis, A., Boesiger, P.: Resolving fiber crossing using advanced fast marching tractography based on diffusion tensor imaging. Neuroimage 30(1), 110–120 (2006)

    Article  Google Scholar 

  20. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge Univ. Press, Cambridge (1999)

    MATH  Google Scholar 

  21. Xue, Z., Shen, D., Karacali, B., Stern, J., Rottenberg, D., Davatzikos, C.: Simulating Deformations of MR Brain Images for Validation of Atlas-based Segmentation and Registration Algorithms. Neuroimage 33(3), 855–866 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H., Xue, Z., Guo, L., Wong, S.T.C. (2009). Simultaneous Consideration of Spatial Deformation and Tensor Orientation in Diffusion Tensor Image Registration Using Local Fast Marching Patterns. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics