Abstract
Outlining a high level cognitive approach to how we select media based on affective user preferences, we model the latent semantics of lyrics as patterns of emotional components. Using a selection of affective last.fm tags as top-down emotional buoys, we apply LSA latent semantic analysis to bottom-up represent the correlation of terms and song lyrics in a vector space that reflects the emotional context. Analyzing the resulting patterns of affective components, by comparing them against last.fm tag clouds describing the corresponding songs, we propose that it might be feasible to automatically generate affective user preferences based on song lyrics.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Meyer, L.B.: Meaning in music and information theory. Journal of Aesthetics and Art Criticism 15, 412–424 (1957)
Temperley, D.: Music and probability. MIT Press, Cambridge (2007)
Huron, D.: Sweet anticipation: Music and the psychology of expectation. MIT Press, Cambridge (2006)
Jackendoff, R., Lerdahl, F.: The capacity for music: what is it, and what’s special about it? Cognition, 33–72 (2006)
Krumhansl, C.L.: Music: A link between cognition and emotion. Current Directions in Psychological Science, 35–55 (2002)
Jongwha, K., André, E.: Emotion recognition based on physiological changes in music listening. IEEE Transactions on pattern anlysis and machine intelligence 12, 2067–2083 (2008)
Levy, M., Sandler, M.: A semantic space for music derived from social tags. In: Proceedings of the 8th International Conference on Music Information Retrieval, pp. 411–416 (2007)
Hu, X., Bay, M., Downie, S.J.: Creating a simplifed music mood classification ground-truth set. In: Proceedings of the 8th International Conference on Music Information Retrieval, pp. 309–310 (2007)
Levitin, D.J., Menod, V.: Musical structure is processed in “language” areas of the brain: a possible role for Brodmann Area 47 in temporal coherence. NeuroImage 20(4), 2142–2152 (2003)
Calln, C., Tsytsarev, V., Hanakawa, T., Calln, A., Katsuhara, M., Fukuyama, H., Turner, R.: Song and speech: Brain regions involved with perception and covert production. NeuroImage 31(3), 1327–1342 (2006)
Koelsch, S., Siebel, W.A.: Towards a neural basis of music perception. Trends in Cognitive Sciences 9(12), 578–584 (2005)
Steinbeis, N., Koelsch, S.: Shared neural resources between music and language indicate semantic processing of musical tension-resolution patterns. Cerebral Cortex 18(5), 1169–1178 (2008)
Slevc, L.R., Rosenberg, J.C., Patel, A.D.: Language, music and modularity, Evidence for shared processing of linguistic and musical syntax. In: Proceedings of the 10th International Conference on Music Perception & Cognition (2008)
Schön, D., Gordon, R.L., Besson, M.: Musical and linguistic processing in song perception. Annals of the New York Academy of Sciences 1060, 71–81 (2005)
Gallese, V.: Embodied simulation: From neurons to phenomenal experience. Phenomenology and the Cognitive Sciences 4, 23–48 (2005)
Gallese, V., Lakoff, G.: The brain’s concepts: the role of the sensory motor system in conceptual knowledge. Cognitive Neuropsychology 22, 455–479 (2005)
Molnar-Szakacs, I., Overie, K.: Music and mirror neurons: from motion to ‘e’ motion. Social cognitive and affective neuroscience 1(33), 235–241 (2006)
Hansen, L.K., Feng, L.: Cogito componentiter - ergo sum. In: Rocha, J., et al. (eds.) Independent Component Analysis and Blind Signal Separation. LNCS, vol. 3886, pp. 446–453. Springer, Heidelberg (2006)
Bell, A.J., Sejnowski, T.T.: The independent components of natural scenes are edge filters. Vision Research 37(23), 3327–3338 (1997)
Feng, L., Hansen, L.K.: On phonemes as cognitive components of speech. In: Proceedings of IAPR workshop on cognitive information processing (2008)
Furnas, G.W., Deerwester, S., Dumais, S.T., Landauer, T.K., Harshman, R., Streeter, L.A., Lochbaum, K.E.: Information retrieval using a singular value decomposition model of latent semantic structure. In: 11th annual international SIGIR conference, pp. 465–480 (1988)
Deerwester, S., Dumais, S.T., Furnas, G.W., George, W., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)
Landauer, L.K., Dumais, S.T.: A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 211–240 (1997)
Cudeiro, J., Sillito, A.M.: Looking back: corticothalamic feedback and early visual processing. Trends in Neurosciences 29(6), 298–306 (2006)
Sillito, A.M., Cudeiro, J., Jones, H.E.: Always returning: feedback and sensory processing in visual cortex and thalamus. Trends in Neurosciences 29(6), 307–316 (2006)
Maunsell, J.H.R., Treue, S.: Feature-based attention in visual cortex. Trends in Neurosciences 29(6), 317–322 (2006)
Storbeck, J., Clore, G.L.: On the interdependence of cognition and emotion. Cognition & Emotion 21(6), 1212–1237 (2007)
Duncan, S., Barret, L.F.: Affect is a form of cognition: a neurobiological analysis. Cognition & Emotion 21(6), 1184–1211 (2007)
Barret, L.F.: Solving the emotion paradox: categorization and the experience of emotion. Personality and social psychology review 10(1), 20–46 (2006)
Osgood, C.E., Suci, G.J., Tannenbaum, P.H.: The measurement of meaning. University of Illinois Press, Urbana (1957)
Russel, J.A.: A circumplex model of affect. Journal of personality and social psychology 39(6), 1161–1178 (1980)
Bradley, M.M., Lang, P.J.: Affective norms for English words (ANEW), Stimuli, instruction manual and affective ratings, The Center for Research in Psychophysiology, University of Florida (1999)
Schubert, E.: Update of the Hevner adjective checklist. Perceptual and Motor Skills (96), 1117–1122 (2003)
Power, M.J.: The structure of emotion: an empirical comparison of six models. Cognition & Emotion 20(5), 694–713 (2006)
Strauss, G.P., Allen, D.N.: Emotional intensity and categorisation ratings for emotional nonemotional words. Cognition & Emotion 22(1), 114–133 (2008)
Bigand, E., Vieillard, S., Madurell, F., Marozeau, J., Dacquet, A.: Multidimensional scaling of emotional responses to music: the effect of musical expertise and of the duration of the excerpts. Cognition & Emotion 19(8) (2005)
Martin, D.I., Berry, M.W.: Mathematical foundations behind latent semantic analysis. In: Handbook of latent semantic analysis. Erlbaum, Mahwah (2007)
Kintsch, W.: Comprehension - a paradigm for cognition. Cambridge University Press, Cambridge (1998)
Pöppel, E.: A hierarchical model of temporal perception. Trends in Cognitive Sciences 1(2), 56–61 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Petersen, M.K., Hansen, L.K., Butkus, A. (2009). Semantic Contours in Tracks Based on Emotional Tags. In: Ystad, S., Kronland-Martinet, R., Jensen, K. (eds) Computer Music Modeling and Retrieval. Genesis of Meaning in Sound and Music. CMMR 2008. Lecture Notes in Computer Science, vol 5493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02518-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-02518-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02517-4
Online ISBN: 978-3-642-02518-1
eBook Packages: Computer ScienceComputer Science (R0)