Abstract
We present a model of motor learning based on a combination of Operational Space Control and Optimal Control. Anticipatory processes are used both in the learning of the dynamics model of the system and in the coordination between both types of control. In order to illustrate the proposed model and associated control method, we apply these principles to the control of a simplified virtual humanoid performing a stand-up task starting from a crouching posture.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernstein, N.: The Co-ordination and Regulation of Movements. Pergamo, Oxford (1967)
Flash, T., Hogan, N.: The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model. Journal of Neuroscience 5(7), 1688–1703 (1985)
Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics 61(2), 89–101 (1989)
Kawato, M.: Optimization and learning in neural networks for formation and control of coordinated movement. In: Attention and performance XIV (silver jubilee volume): synergies in experimental psychology, artificial intelligence, and cognitive neuroscience, pp. 821–849. MIT Press, Cambridge (1993)
Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., Kawato, M.: Quantitative examinations of internal representations for arm trajectory planning: Minimum commanded torque change model. Journal of Neurophysiology 81(5), 2140–2155 (1999)
Harris, C.M., Wolpert, D.M.: Signal-dependent noise determines motor planning. Nature 394, 780–784 (1998)
Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47(6), 381–391 (1954)
Todorov, E., Jordan, M.: A minimal intervention principle for coordinated movement. In: NIPS, pp. 27–34 (2003)
Scholz, J.P., Schöner, G.: The uncontrolled manifold concept: identifying control variables for a functional task. Experimental Brain Research 126(3), 289–306 (1999)
Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nature Neurosciences 5(11), 1226–1235 (2002)
Todorov, E.: Optimality principles in sensorimotor control. Nature Neurosciences 7(9), 907–915 (2004)
Guigon, E., Baraduc, P., Desmurget, M.: Computational motor control: Redudancy and invariance. Journal of Neurophysiology 97(1), 331–347 (2007)
Guigon, E., Baraduc, P., Desmurget, M.: Optimality, stochasticity and variability in motor behavior. Journal of Computational Neuroscience 24(1), 57–68 (2008)
Guigon, E., Baraduc, P., Desmurget, M.: Computational motor control: Feedback and accuracy. European Journal of Neuroscience 27(4), 1003–1016 (2008)
Miyamoto, H., Wolpert, D.M., Kawato, M.: Computing the optimal trajectory of arm movement: the TOPS (task optimization in the presence of signal-dependent noise) model. In: Biologically inspired robot behavior engineering, pp. 395–415. Physica-Verlag GmbH, Germany (2003)
Wolpert, D.M., Ghahramani, Z.: Computational principles of movement neuroscience. Nature Neuroscience 3, 1212–1217 (2000)
Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11(7-8), 1317–1329 (1998)
Davidson, P.R., Wolpert, D.M.: Widespread access to predictive models in the motor system: a short review. Journal of Neural Engineering 2(3), S313–S319 (2005)
Haruno, M., Wolpert, D.M., Kawato, M.: MOSAIC model for sensorimotor learning and control. Neural Computation 13(10), 2201–2220 (2001)
Doya, K., Samejima, K., Katagiri, K., Kawato, M.: Multiple model-based reinforcement learning. Neural Computation 14(6), 1347–1369 (2002)
Shadmehr, R., Wise, S.: The Computational Neurobiology of Reaching and Pointing. MIT Press, Cambridge (2005)
Khatib, O.: A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation 3(1), 43–53 (1987)
Sentis, L., Khatib, O.: Control of free-floating humanoid robots through task prioritization. In: IEEE Conference on Robotics and Automation (ICRA), pp. 1718–1723 (April 2005)
Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Transactions on Robotics and Automation 13(3), 398–410 (1997)
Barthlemy, S., Bidaud, P.: Stability measure of postural dynamic equilibrium based on residual radius. In: RoManSy 2008: 17th CISM-IFToMM Symposium on Robot Design, Dynamics and Control (2008)
Vijayakumar, S., DSouza, A., Schaal, S.: LWPR: A scalable method for incremental online learning in high dimensions. Technical report. Press of University of Edinburgh, Edinburgh (2005)
Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)
Potts, D., Sammut, C.: Incremental learning of linear model trees. Machine Learning 61(1-3), 5–48 (2005)
Sun, G., Scassellati, B.: A fast and efficient model of learning to reach. International Journal of Humanoid Robotics 2(4), 391–414 (2005)
Vijayakumar, S., Schaal, S.: Local dimensionality reduction for locally weighted learning. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 220–225 (1997)
Tenenhaus, M.: La régression PLS: théorie et pratique. Editions Technip (1998)
D’Souza, A., Vijayakumar, S., Schaal, S.: Learning inverse kinematics. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 298–303 (2001)
Wieber, P.B., Billet, F., Boissieux, L., Pissard-Gibollet, R.: The HuMAnS toolbox, a homogeneous framework for motion capture, analysis and simulation. In: Proceedings of the ninth ISB Symposium on 3D analysis of human movement, Valenciennes, France. Academic, San Diego (2006)
Sastry, S., Bodson, M., Bartram, J.F.: Adaptive control: Stability, convergence, and robustness. The Journal of the Acoustical Society of America 88, 588 (1990)
Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, New York (2007)
Mitrovic, D., Klanke, S., Vijayakumar, S.: Adaptive optimal control for redundantly actuated arms. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS, vol. 5040, pp. 93–102. Springer, Heidelberg (2008)
Todorov, E., Li, W.: A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. In: Proceedings of the American Control Conference, pp. 300–306 (2005)
Nguyen-Tuong, D., Peters, J., Seeger, M., Scholkopf, B.: Learning inverse dynamics: a comparison. Technical report, Max Planck Institute for Biological Cybernetics, Spemannstrae 38, 72076 Tubingen - Germany (2008)
Butz, M.V., Herbort, O., Hoffman, J.: Exploiting redundancy for flexible behavior: Unsupervised learning in a modular sensorimotor control architecture. Psychological Review 114(4), 1015–1046 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Salaün, C., Padois, V., Sigaud, O. (2009). A Two-Level Model of Anticipation-Based Motor Learning for Whole Body Motion. In: Pezzulo, G., Butz, M.V., Sigaud, O., Baldassarre, G. (eds) Anticipatory Behavior in Adaptive Learning Systems. ABiALS 2008. Lecture Notes in Computer Science(), vol 5499. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02565-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-02565-5_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02564-8
Online ISBN: 978-3-642-02565-5
eBook Packages: Computer ScienceComputer Science (R0)