Skip to main content

An Improved Particle Swarm Optimization with Feasibility-Based Rules for Constrained Optimization Problems

  • Conference paper
Next-Generation Applied Intelligence (IEA/AIE 2009)

Abstract

This paper presents an improved particle swarm optimization (IPSO) to solve constrained optimization problems, which handles constraints based on certain feasibility-based rules. A turbulence operator is incorporated into IPSO algorithm to overcome the premature convergence. At the same time, a set called FPS is proposed to save those P best locating in the feasible region. Different from the standard PSO, g best in IPSO is chosen from the FPS instead of the swarm. Furthermore, the mutation operation is applied to the P best with the maximal constraint violation value in the swarm, which can guide particles to close the feasible region quickly. The performance of IPSO algorithm is tested on a well-known benchmark suite and the experimental results show that the proposed approach is highly competitive, effective and efficient.

This work was supported in part by National Science Foundation of China under Grant NO.60674104 and by Natural Science Foundation of Shanxi Province of China under Grant NO. 20081030.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Comput. Meth. Appl. Mech. Eng. 191, 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Michalewicz, Z.: A survey of constraint handling techniques in evolutionary computation methods. In: Mcdonnell, J.R., Reynolds, R.G., Fogel, D.B. (eds.) Proceedings of the 4th Annual Conference on Evolutionary Programming, pp. 135–155. MIT Press, San Diego (1995)

    Google Scholar 

  3. Coello Coello, C.A.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41, 113–127 (2000)

    Article  MATH  Google Scholar 

  4. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evol. Comput. 7(1), 19–44 (1999)

    Article  Google Scholar 

  5. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 4(3), 284–294 (2000)

    Article  Google Scholar 

  6. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  7. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  8. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms. LNCS, vol. 455. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  9. Himmelblau, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  10. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method for constrained optimization problems. In: Proceedings of the Euro-International Symposium on Computational Intelligence (E-ISCI 2002), Slovakia (2002)

    Google Scholar 

  11. Lu, H.Y., Chen, W.Q.: Self-adaptive velocity particle swarm optimization for solving constrained optimization problems. Journal of Global Optimization 41(3), 427–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 7, 19–44 (1999)

    Google Scholar 

  13. Toscano Pulido, G., Coello Coello, C.A.: A constraint-handling mechanism for particle swarm optimization. In: Proceedings of the 2004 Congress on Evolutionary Computation, vol. 2, pp. 1396–1403 (2004)

    Google Scholar 

  14. He, Q., Wang, L.: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Mathematics and Computation 186, 1407–1422 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu, X., Eberhart, R.C.: Solving constrained nonlinear optimization problems with particle swarm optimization. In: Proceedings of 6th World Multiconference on Systemics, Cybernetics and Informatics (SCI 2002), Orlando, USA (2002)

    Google Scholar 

  16. Zhang, W.J., Xie, X.F.: DEPSO: hybrid particle swarm with differential evolution operator. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics (October 2000); IEEE Trans. Evol. Comput. 4, 284–294 (2000)

    Google Scholar 

  17. Shi, Y.H., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings IEEE International Conference on Evolutionary Computation, Anchorage, pp. 69–73 (1998)

    Google Scholar 

  18. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufman Publishers, San Francisco (2001)

    Google Scholar 

  19. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 4, 1–32 (1996)

    Article  Google Scholar 

  20. Muñoz Zavala, A.E., Hernández Aguirre, A., Villa Diharce, E.R.: Constrained optimization via particle evolutionary swarm optimization algorithm (PESO). In: GECCO 2005, Washington, DC, USA, pp. 209–216 (2005)

    Google Scholar 

  21. Efrén, M.M., Coello Coello, C.A.: A simple multimembered evolution strategy to solve constrained optimization problems. Evolutionary Computation 4(1), 1–32 (1996)

    Article  MATH  Google Scholar 

  22. Chang, J.F., Chu, S.C., Roddick, J.F., Pan, J.S.: A Parallel Particle Swarm Optimization Algorithm with Communication Strategies. Journal of Information Science and Engineering 21(4), 809–818 (2005)

    Google Scholar 

  23. Chu, S.C., Pan, J.S.: Intelligent Parallel Particle Swarm Optimization Algorithms. In: Nedjah, N., Alba, E., Macedo Mourelle, L. (eds.) Studies in Computational Intelligence Series, vol. 22, pp. 159–175. Springer, Heidelberg (2006)

    Google Scholar 

  24. Chu, S.C., Tsai, P.W., Pan, J.S.: Parallel Particle Swarm Optimization Algorithms with Adaptive Simulated Annealing. In: Abraham, A., Grosan, C., Ramos, V. (eds.) Studies in Computational Intelligence Series, vol. 31, pp. 261–279. Springer, Heidelberg (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, Cl., Zeng, Jc., Pan, Js. (2009). An Improved Particle Swarm Optimization with Feasibility-Based Rules for Constrained Optimization Problems. In: Chien, BC., Hong, TP., Chen, SM., Ali, M. (eds) Next-Generation Applied Intelligence. IEA/AIE 2009. Lecture Notes in Computer Science(), vol 5579. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02568-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02568-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02567-9

  • Online ISBN: 978-3-642-02568-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics