
J.A. Jacko (Ed.): Human-Computer Interaction, Part I, HCII 2009, LNCS 5610, pp. 549–558, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Little Design Up-Front: A Design Science Approach to
Integrating Usability into Agile Requirements

Engineering

Sisira Adikari, Craig McDonald, and John Campbell

Faculty of Information Sciences and Engineering,
University of Canberra ACT 2601 Australia

{Sisira.Adikari,Craig.McDonald,John.Campbell}@canberra.edu.au

Abstract. In recent years, Design Science has gained wide recognition and ac-
ceptance as a formal research method in many disciplines including information
systems. Design Science research in Human-Computer Interaction is not so
abundant. HCI is a discipline primarily focusing on design, evaluation, and im-
plementation where design plays the role as a process as well as an artefact. In
this paper, we present a design science approach using “Little Design Up Front”
to integrate the User-Centred Design perspective into Agile Requirements En-
gineering. We also present the results of two agile projects to validate the
proposition that incorporating UCD perspective into Agile Software Develop-
ment improves the design quality of software systems.

Keywords: Design Science, Agile Requirements Engineering, Usability.

1 Introduction

Usability has been identified as an important quality attribute of software products [1]
but it has been classified as one of the Non-Functional Requirements (NFR) in Re-
quirements Engineering (RE) [2]. A key aspect of traditional requirements engineering
is to have formal requirements specified prior to software development. It also concen-
trates on functional requirements and ensuring that the developed products meet such
requirements, rather than other NFR, which are considered less important [3]. The des-
ignation of usability as a less important NFR impacts the design because a reduced
focus on user-centredness creates systems acceptance problems, necessitates rework and
negatively impacts end user experience [4]. Current trends of software development
increasingly favour agile development methods over plan-driven Software Engineering
(SE) processes to better handle rapid change of stakeholder, business and technology
requirements. Despite the success of Agile Software Development (ASD) reported by
many software development organizations, none of the major agile development meth-
ods explicitly incorporate usability engineering practices in respective software devel-
opment processes [5]. Recent research reported by Düchting et al. [6] involving two of
the most popular agile models revealed that both had significant deficiencies in handling
user-centered requirements. Accordingly, it is evident that ASD processes lack user-
centric perspectives in their development methods and this likely to propagate usability

550 S. Adikari, C. McDonald, and J. Campbell

issues into finished products. As a result, end-user experience and satisfaction are di-
rectly affected.

In this paper, we present a design science approach using “Little Design Up Front”
to integrate User-Centred Design (UCD) perspective into Agile Requirements Engi-
neering. We also present the results of two agile software projects to validate the
proposition that incorporating UCD perspective into ASD improves design quality of
software systems.

2 Design Science

Design Science is a problem solving paradigm which aims at creating and evaluating
innovative artifacts that address important and relevant organizational problems [7].
According to March and Smith, there are two fundamental design science processes:
‘build’ and ‘evaluate’, and four types of products namely: ‘constructs’, ‘models’,
‘methods’ and ‘instantiations’. A construct forms the vocabulary of a domain, a
model is a set of propositions expressing relationships among constructs, a method is
a set of steps used to perform a task, and an instantiation is the realization of an arti-
fact in its environment [8].

2.1 Design Science Research for Information Systems

In recent years, design science has gained a wide recognition and acceptance as a
formal research method in many disciplines including Information Systems (IS). The
Design Science paradigm has its roots in engineering and the sciences of the artificial
[9]. Simon made the distinction between natural science and design science in that the
former is concerned with how things are and the latter is concerned with how things
ought to be [9]. Behavioral Science research is an origin of natural science and aims
at developing and justifying theories which explain or predict organizational human
phenomena surrounding the analysis, design, implementation, management, and use
of information systems. On the other hand, Design Science Research (DSR) aims at
creating innovations that define ideas, practices, technical capabilities, and product
through the analysis, design, implementation, management, and use of information
systems [7],[8]. As creating design solution artifacts for an important problem in
Human-Computer Interaction (HCI) is a combined effort of both behavioral science
and design science paradigms, these two research paradigms complement each other.
Behavioral Science attempts to “understand” the problem. Design Science attempts to
“solve” it. According to Iivari [10], design science is a contrast to natural-behavioral
science research which aims at finding empirical regularities, whilst design science
aims at building artifacts.

Hevner et al. [7] presented an IS research framework that combined both behav-
ioral-science and design-science paradigms for understanding, executing, and evaluat-
ing IS research (see Figure 1). In the IS research framework, the Environment defines
the scope of the problem domain that includes organizations, technology, and people.
IS Research is the research effort conducted by applying behavioral science, through
the use of theories that explain or justify the business problem, and design science to
address the building and evaluation of artifacts designed to meet the identified busi-
ness need. The Knowledge Base encompasses all the theoretical foundations, includ-
ing the research methodologies and the kernel theories.

 Little Design Up-Front 551

Fig. 1. Information Systems Research Framework [7]

In a recent paper, Hevner [11] further elaborated the IS research framework in
terms of three inherent DSR cycles to enhance the understanding of high quality DSR
in IS. Hevner pointed out that these three research cycles must be present and clearly
identified in a DSR project.

These research cycles within the IS research framework are shown in Figure 2. Ac-
cording to Hevner, the relevance cycle connects the contextual environment of the
research project with the design science activities. The main focus of relevance cycle
is to capture problem to be addressed or requirements for the research and to provide
design solution artifacts to the environment for study and evaluation in the application
domain. The rigor cycle connects the design science activities with the knowledge
base that informs the research project. That is, it ensures innovation by providing
existing knowledge to the research. The knowledge base consists of foundations,
existing experiences and expertise, and existing artifacts and processes. The main
focus of rigor cycle is to provide applicable knowledge for design science activities

Fig. 2. Design Science Research Cycles [11]

552 S. Adikari, C. McDonald, and J. Campbell

and to feedback the updated knowledge to enrich the knowledge base. The internal
design cycle iterates between core activities of building and evaluating the design
artifacts and processes of the research. The main focus of the design cycle is to create,
evaluate and refine design artifacts until a satisfactory design is achieved.

For this research project, we have deployed the information systems research
framework associated with DSR cycles (Figure 1 and 2 above).

3 Agile Requirements Engineering and Practice

The main distinction between Agile Requirements Engineering (RE) and traditional
RE is that the former welcomes rapidly changing requirements even late in the soft-
ware development process and the latter gathers and specifies requirements up front
prior to software development. The dynamic nature of most organizations makes
continuously changing requirements normal, hence it is difficult to gather and specify
complete, stable and accurate requirements up front. Rapid changes in competitive
threats, stakeholder preferences, development technology, and time-to-market pres-
sures make pre-specified requirements inappropriate [12].

A recent empirical case study [13] on ten software development organizations
identified seven key agile RE practices namely: Face-to-face communication over
written specifications, Iterative requirements engineering, Requirement prioritization,
Managing requirements change through constant planning, Prototyping, Test-driven
development, and Use review meetings and acceptance tests. These practices are in
line with agile principles [14] such as: Satisfy the customer through early and con-
tinuous delivery of valuable software; Welcome changing requirements even late in
development; Deliver working software frequently; Business and developers work
collaboratively throughout the project; Build projects around motivated individuals;
Face-to-face conversation as the most efficient and effective method of communica-
tion; Working software is the primary measure of progress; Promote sustainable de-
velopment; Continuous attention to technical excellence and good design; Simplicity;
Self-organizing teams and Regular reflections to become more effective.

4 User-Centred Design Integration with Software Engineering

In HCI literature, there are many user-centric methods and techniques that have been
proposed to assist the production of usable, useful, and desirable software products
[15], [16], [17]. Software product development still follows through a software devel-
opment process where functionality is considered as the main priority. According to
the literature, SE and HCI are largely two distinct communities. For the IEEE [18],
SE is the application of a systematic, disciplined, quantifiable approach to the devel-
opment, operation, and maintenance of software where as HCI is a discipline con-
cerned with the design, evaluation and implementation of interactive computing
systems for human use in a social context, and with the study of major phenomena
surrounding them [19]. Importantly, HCI is by no means considered a central topic in
SE and usability is considered as one of many non functional requirements and qual-
ity attributes [20].

 Little Design Up-Front 553

As recently reported in the literature, there is a growing interest to incorporate
user-centric perspective into SE practice so that usability awareness is widely known
and software products become more user-centred and usable [21], [22]. This inte-
grated approach is known as Human-Centred or User-Centred Software Engineering.
Seffah et al. [23] discussed some of the most relevant HCI and SE integration frame-
works and highlight their strengths and weaknesses as well as the level of objectivity
in integrating HCI methods and principles for different software engineering methods.
The frameworks they summarized were found to be useful for usability and software
specialists who are interested in the development of methodologies and standards,
who have researched or developed specific user-centered design techniques or who
have worked with software development methodologies. Generally these frameworks
provided insights in how to integrate user-centered best practices and user experiences
with software engineering methodologies [20]. Discussing the importance of user
modeling and usability modeling for user-centred software requirements, Adikari
et al. [4] presented a framework for integrating ISO 13407 process model into a typi-
cal software development life cycle. The particular emphasis of the framework was its
framework has the potential for defining the requirements to be more user-centred and
task-oriented with lesser turnaround time.

5 Little Design Up-Front

Traditional RE stresses that requirements elicitation and specification required to be
complete up front prior to the software development. Similar to traditional RE, UCD
also assumes that contextual research and design will take place at the start of the
project to provide detailed design information for subsequent development and
evaluation. In agile environments, this assumption does not hold. Rather than defining
requirements up front, agile software processes seek to follow an evolutionary ap-
proach to define requirements during the course of analysis, which is known as Just-
In-Time (JIT) requirements analysis. As far as UCD is concerned, there should be at
least a little contextual information available to support creating the design artifacts
and proceed further. Therefore, JIT design approach is quite difficult and not appro-
priate for creating UCD focused artifacts in agile environments. As a practical solu-
tion, we propose Little Design Up Front (LDUF) - an approach providing only
required details of UCD information as needed to support the analysis and design in
agile iterations. The objective is to provide only sufficient LDUF information to sup-
port the popular agile JIT analysis and design so that UCD perspective can be consid-
ered without overloading existing agile practices. The LDUF is drawn from design
solutions created in a DSR setting using environmental requirements, and applicable
knowledge from the knowledge base as shown in Figure 3.

Figure 3 is similar to Figure 2 except that the relevance cycle in Figure 2 was re-
placed with Requirements (an input from environment to the DSR) and Solutions (an
input from the DSR to the Environment) and these changes are in line with Figure 1
where Requirements and Solutions are represented by Business Needs and Applica-
tion in the Appropriate Environment respectively. Moreover, the emphasis of Create
Little Design Artifacts has been shown within DSR.

554 S. Adikari, C. McDonald, and J. Campbell

Fig. 3. Design Science Research Cycles with LDUF

6 Research Design

This research consisted of two agile projects. The first project was conducted as the
baseline reference to compare the project incorporating user-centred design. The first
project was a typical agile project with three iterations and its’ research design is
shown in Figure 4.

Fig. 4. Research design – Agile project 1

There were three defined roles in project 1 namely Product Owner, Agile Coach,
and Agile Team. The product owner provided abstract level requirements for both
projects and participated in tasks related to the product backlog analysis. The agile
coach provided directions to the project and was responsible for removing any proc-
ess impediments. The agile team made the necessary decisions to achieve goals of
respective iteration and carried out the software development.

The second agile project was directed by a different agile coach and two user-
centred designers worked with a new agile team in the design analysis providing the
LDUF. The research design of the second agile project is shown in Figure 5.

6.1 Research Process

There were two different agile teams and agile coaches for project 1 and 2 and there
were no other cross-over of resources excepting the product owner, who provided
business requirements of an accommodation management system for both projects.
The product owner was part of the each big team and was available in all iterations
for requirements verification and validation. Project 1 ran first with three iterations.
The first iteration was focused on requirements analysis and setting up the product

 Little Design Up-Front 555

Fig. 5. Research design – Agile project 2

backlog. The agile team worked under the guidance and direction of the agile coach to
produce working software. At the end of the first iteration, the agile team formally
presented the first version of the working software to the product owner for assess-
ment. In consultation and agreement with the product owner, the product backlog was
then updated and the second iteration was planned. The second and third iterations
were conducted in the same way as the first one based on similar agile settings and
principles. At the end of the third iteration, the product owner formally assessed the
final product delivered by the first project (P1) and signed off.

The second project was run in a similar fashion to the first project except that two
user-centred designers were allowed to consistently engage with the team to put for-
ward LDUF for design analysis. They worked very closely with the agile team and the
product owner to create and assess paper-based artifacts in support of analysis, verifi-
cation and validation. At the end of the third iteration, the product owner and user-
centred designers formally assessed the final product delivered by the second project
(P2) and signed off.

7 Product Evaluation

The product P1 and P2 were subjected to one-on-one usability evaluations with 16
participants who were randomly drawn from a large pool of users. The evaluation ran

556 S. Adikari, C. McDonald, and J. Campbell

in three stages. Firstly, the product P1 was evaluated with first 8 participants (group
U1). Secondly, the product P2 evaluated with the second 8 participants (group U2)
followed by first 8 participants (U1). Thirdly, the product P1 was evaluated with sec-
ond 8 participants (U2). We followed this approach to minimize any learning effect
bias in the assessments. We used a number of scenarios to guide the participant to go
through the product and complete assigned user tasks.

After the evaluation, each participant was given a pack containing the Product Re-
action Cards (PRC) [23] and System Usability Scale (SUS) [24] questionnaire. Par-
ticipants were then asked to reefer to the PRC and tick all words that best described
their user experience with the product and then to prioritize five of those words that
they thought were most descriptive of the product. We then asked them to reason out
why they chose those five words. We used Product Reaction Cards to aid participants
to think deeply about their interaction experience. Finally the participant was re-
quested to fill out the SUS questionnaire.

8 Results

A repeated measures Analysis of Variance (ANOVA) was conducted on the data for
each question from the SUS questionnaire for both products. The aim was to deter-
mine if there was a significant difference of agreement of user groups in relation to
their interaction with Product P1 and P2. Table 1 shows the mean response values for
each product, statistical significance levels, the difference between mean values, and
the percentage of change in mean values.

Table 1. Analysed results: Product P1 and P2

According to the above Table, for each question, there is a positive difference of

agreement from users for Product 2. Importantly, the agreements for the Q3, Q4, and
Q7 are of significant difference (as the P<0.05 regarded as significance) yielding that
Product 2 is easy to use (Q3), easy to learn (Q7) and product 1 requires additional
support to be able to use (Q4).

Table 2 shows the SUS percentage for P1 and P2 reported by each participant. The
mean of P1 = 47.31 and P2 = 52.95 and the difference is 5.61. The SUS usability
difference of P1 and P2 is 11.92%. Accordingly product P2 found to be of better us-
ability than product P1.

 Little Design Up-Front 557

Table 2. SUS values for Product P1 and P2

9 Conclusion

This paper presented the results of two agile projects to validate the proposition that
incorporating a User-Centred Design perspective into Agile Software Development
improves design quality of software systems. A design science approach using “Little
Design Up Front” was used to integrate the User-Centred Design perspective into
development process. The results show that users find products developed using this
approach easier to learn, easier to use and require less support to be able to use.

Acknowledgements

We would like to thank Andrew Boyd, Donna Spencer, Dulan De Silva, Evan Laybourne,
Narayanan Srinivasan, Rowan Bunning and Sandun Kodithuwakku for their advice/
support in this research project.

References

1. Jokela, T.: Guiding Designers to the World of Usability: Determining Usability Require-
ments through Team Work. In: Human-Centred Software Engineering – Integrating Us-
ability in the Software Development Lifecycle, pp. 61–78 (2004)

2. Sommerville, I.: Software Engineering, p. 122. Pearson Addison-Wesley, England (2004)
3. Bevan, N.: Design for Usability. In: Proceedings of HCI International, pp. 762–767 (1999)
4. Adikari, S., McDonald, C., Lynch, N.: Design Science-Oriented Usability Modelling for

Software Requirements. In: Proceedings of HCI International, pp. 373–382 (2007)
5. Kane, D.: Finding a Place for Discount Usability Engineering in Agile Development:

Throwing Down the Gauntlet. In: Proceedings of the Agile Development Conference, pp.
40–46 (2003)

558 S. Adikari, C. McDonald, and J. Campbell

6. Düchting, M., Zimmermann, D., Karsten, N.L.: Incorporating User Centered Requirement
Engineering into Agile Software Development. In: Proceedings of HCI International, pp.
58–67 (2007)

7. Hevner, A., March, S.T., Park, J., Ram, S.: Design Science Research in Information Sys-
tems. MIS Quarterly 28(1), 75–105 (2004)

8. March, S.T., Smith, G.F.: Design and Natural Science Research on Information Technol-
ogy. Decision Support Systems 15(4), 251–266 (1995)

9. Simon, H.: The Sciences of the Artificial. MIT Press, Cambridge (1996)
10. Iivari, J.: A Paradigmatic Analysis of Information Systems as a Design Science. Scandina-

vian Journal of Information Systems 19(2), 39–64 (2007)
11. Hevner, A.: A Three Cycle View of Design Science Research. Scandinavian Journal of In-

formation Systems 19(2), 87–92 (2007)
12. Merisalo-Rantanen, H., Tuunanen, T., Rossi, M.: Is Extreme Programming Just Old Wine

in New Bottles: A Comparison of Two Cases. Journal of Database Management 16(4), 41–
61 (2005)

13. Cao, L., Ramesh, B.: Agile Requirements Engineering Practices: An Empirical Study.
IEEE Software 25(1), 60–67 (2008)

14. Manifesto for Agile Software Development, http://agilemanifesto.org/
15. Nielsen, J.: Usability Engineering. Academic Press, San Diego (1993)
16. Mayhew, D.J.: The Usability Engineering Lifecycle. Morgan Kaufmann, San Francisco

(1999)
17. Constantine, L.L., Lockwood, L.A.D.: Software for Use: A Practical Guide to the Models

and Methods of Usage-Centered Design. Addison-Wesley, Boston (1999)
18. IEEE: IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engineering Termi-

nology. IEEE, New York (1990)
19. ACM SIGCHI: Curriculum for Human-Computer Interaction. ACM Press, New York

(1992)
20. Seffah, A., Desmarais, M.C., Metzker, E.: HCI, Usability and Software Engineering Inte-

gration: Present and Future. In: Human-Centered Software Engineering - Integrating Us-
ability in the Software Development Lifecycle, vol. 8, Springer, Heidelberg (2005)

21. Zimmermann, D., Grötzbach, L.: A Requirement Engineering Approach to User Centered
Design. In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4550, pp. 360–369. Springer, Heidel-
berg (2007)

22. Seffah, A., Gulliksen, J., Desmarais, M.D. (eds.): Human-Centered Software Engineering -
Integrating Usability in the Development Process. Springer, Heidelberg (2005)

23. Benedek, J., Miner, T.: Measuring Desirability: New Methods for Evaluating Desirability
in a Usability Lab Setting. In: Proceedings of UPA, Oralando, Florida (2002)

24. Brook, J.: SUS: A Quick and Dirty Usability Scale. In: Jordan, P.W., McClelland, I.L.,
Thomas, B. (eds.) Usability Evaluation in Industry, pp. 18–195. Taylor and Francis, Lon-
don (1996)

	Little Design Up-Front: A Design Science Approach to Integrating Usability into Agile Requirements Engineering
	Introduction
	Design Science
	Design Science Research for Information Systems

	Agile Requirements Engineering and Practice
	User-Centred Design Integration with Software Engineering
	Little Design Up-Front
	Research Design
	Research Process

	Product Evaluation
	Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

