
J.A. Jacko (Ed.): Human-Computer Interaction, Part II, HCII 2009, LNCS 5611, pp. 141–150, 2009.
© Springer-Verlag Berlin Heidelberg 2009

UbiGesture: Customizing and Profiling Hand Gestures in
Ubiquitous Environment

Ayman Atia, Shin Takahashi, Kazuo Misue, and Jiro Tanaka

Graduate School of Systems and Information Engineering, Department of Computer
Science, University of Tsukuba, Japan

ayman@iplab.cs.tsukuba.ac.jp, {shin,misue,jiro}@cs.tsukuba.ac.jp

Abstract. One of the main challenges of interaction in a ubiquitous environ-
ment is the use of hand gestures for interacting with day to day applications.
This interaction may be negatively affected due to the change in the user’s
position, interaction device, or the level of social acceptance of a specific hand
gesture. We present UbiGesture as architecture for developers and users who
frequently change locations while interacting in ubiquitous environments. The
architecture enables applications to be operated by using hand gestures. Normal
users can customize their own hand gestures when interacting with computers
in context-aware ubiquitous environments. UbiGesture is based on combining
user preferences, location, input/output devices, applications, and hand gestures
into one profile. A prototype implementation application for UbiGesture is pre-
sented. Then a subjective and objective primary evaluation for UbiGesture
while interacting in different locations with different hand gesture profiles is
presented.

Keywords: Ubiquitous environment, Hand gesture profiles, Context aware
services.

1 Introduction

Human hand gestures are an intuitive way for humans to express their feelings and to
interact with several objects in daily life. Hand gestures can be used as a tool for in-
teracting with different applications like media player, presentation viewer...etc. In-
teraction can be done through predefined hand gestures; however it is difficult to fit
all users or enabling users to customize their own hand gestures. The interaction can
be affected negatively if the use’s change position, interaction device, or application
or all of them together. There are two other parameters that can have direct impact on
users so that they change their hand gesture pattern. First is the position of the user
while customizing his hand gesture. A predefined hand gesture, such as moving the
elbow towards the body in a standing position, will be difficult to do when the user is
sitting down on a sofa or sitting at a table because of the limited space. Second is the
social implication of the hand gesture; some hand gestures may scare, annoy, or dis-
turb other people. For example, user A is sitting on a sofa beside person B. If user A
moves his or her arm towards person B (someone A knows), Person B might become
annoyed and interpret the gesture as a minor interruption. A more complex reaction

142 A. Atia et al.

might occur if there is no relationship between people such as in a public space. Such
a gesture may scare the other person. The main idea behind UbiGesture is to provide
users with enough appropriate hand gesture profiles for any given situation. The sys-
tem enables users to define and store their hand gestures using single training hand
gesture templates inside a ubiquitous environment context. The context includes the
user’s location, interaction device, application, and defined application functions. The
UbiGesture system helps developers to operate their applications with hand gestures.
There is no need for developers to understand the details of hand gesture recognition
algorithms or user profiling details. The UbiGesture system was built using inexpen-
sive resources, which benefits the usability and availability of the system.

The rest of this paper is divided into sections discussing related work, UbiGesture
architecture, primary evaluation, and conclusion and future work.

2 Related Work

The study of gesture recognition with a presentation viewer application was shown in
[1]. They show an active region for starting and ending gesture interaction. Also they
point out that gestures can be useful in crowded or noisy situations, such as in a stock
exchange or manufacturing environment. Head and hand gestures have been used for
limited interactions as demonstrated in [2]. They point out the problem of learning
gestures and show the importance of customization. Kurze et al. presented personal-
ization of multimodal applications as a design approach [3]. They focus on implicit
and explicit customization of systems according to a user’s preferences. Kawsar et al.
presented customizing the proactive applications preferences in a ubiquitous envi-
ronment [4]. They present customization in many levels of artifact, action, interaction,
and timing preferences. Customizing a tilt rest hand gesture in eight directions has
been discussed in our previous work [5]. We compared interactions with remote dis-
plays using three methods and user-customized tilt hand gestures. The users’ shows
increase in accuracy and time to hit targets when they were allowed to customize their
hand gestures.

There are many studies that focus on reusing current applications and interfaces
in context-aware environments. Nakajima proposed a model for displaying a GUI
on multiple output devices [6]. He/She also developed a way for selecting devices
according to a user’s location. Ronkainen et al. studied the usability of hand ges-
tures in different ubiquitous environments [7]. They conducted a survey on the
social implications of hand gestures in public spaces. Moreover, they present a tap
gesture for interacting with mobile devices as a type of socially acceptable hand
gesture. They point out that there are gestures that are perceived as being threaten-
ing in public spaces. Hand-gesture positions were determined from our previous
results gathered by Ayman et al. [8]. They show that the position of hand gestures
could affect the accuracy and speed of interaction with an interface for entering
text.

The information technology revolution in the last ten years had a direct impact
on the size and performance of wireless sensors. Some of these sensors have been
used for inferring the context of user and providing ubiquitous services. Recently,

 UbiGesture: Customizing and Profiling Hand Gestures in Ubiquitous Environment 143

there have been many multifunction sensors that have been embedded in small
devices [9] [10]. The problem of these small sensors is their short battery life and
their high cost. UbiGesture uses wii remote as an interacting device in ubiquitous
environments. The Wii [11] remote controller has been suggested as an interaction
device for entertainment purpose and some music and art applications [12] [13].The
main advantage of the Wii remote is its embedded 3D-accelerometer and optical
sensor that is used for motion and position tracking. The Wii remote acceleration
range is ±3 G and has been used in many studies for hand-gesture recognition
[14] [15].

3 UbiGesture Architecture

The UbiGesture system is used for profiling hand gestures of users depending on
the context parameters they exists in. In this research an inexpensive Bluetooth
infrastructure was used because this technology is now embedded in most hand held
devices. Sanchez et al. used this technique for commercial advertising based on
location [16]. Fig. 2. shows an overview of the UbiGesture system. There is a need
for different level of users to operate the UbiGesture system (administrator, devel-
oper, and regular users). An administrator's main role is managing resources and
granting permissions to each user. A developer enables his or her application to be
customized by defining keyboard shortcuts or application programming interfaces
(APIs). A regular user has to define his or her gesture profile and store it in the
network.

Fig. 1. UbiGesture system overview and Bluetooth infrastructure in office prototype

UbiGesture was built using four main modules each module is responsible for
some functions. Fig. 2. shows the system architecture modules of UbiGesture.

144 A. Atia et al.

Fig. 2. UbiGesture System architecture

3.1 User Identification Module

UbiGesture assumes that there is a Bluetooth location manager server “Locator” in
each location, which was a low-specification desktop PC with a Bluetooth dongle.
The locator hosts an application that reads a user’s identification by continuously
searching for a user’s device’s media access control (MAC) address within a 30-
second interval. Each user may have one or more identification devices such as a hand
held mobile device or a Bluetooth sensor. The locator grants access to users for spe-
cific devices in one location and it logs the user’s entrance and exit time from the
location. Whenever users exist in location covered area, it flags a message for all the
permitted devices to download the user gesture profile.

User can have access to more than one device in one location; hence, authentica-
tion is required “User identification” before a device can be used. Interaction with
devices is usually initialized using a keyboard, mouse, or stylus and touch panel. We
believe that hand gestures could be similar to someone’s unique hand-written signa-
ture, by which a user can access a device by entering their device hand gesture signa-
ture. In the UbiGesture the system administrator asks the user to define his or her
personal hand gesture to control permitted devices. However, sometimes devices
could have predefined authentication hand gestures. If the user wants to use a plasma
display, for example, he or she first needs to create a specific hand gesture for starting
this device; another gesture will be required for a large screen display and so on.

If there are two or more users in one place and both have been granted access to
the same device, the User identification module locks the device to be used with only
a single user.

3.2 Data Gathering and Recognition

The user has to press the Wii remote’s "A" button to start recording a gesture and
release the button to stop the recording. Hand gesture h can be represented as a se-
quence of accelerometer sensor readings. A reading at time t can be represented as
A(t)={axt,ayt,azt}. A sensor coordinator connects the Wii remote, a human-computer
interface, and a locator module. The locator module receives readings from the Wii

 UbiGesture: Customizing and Profiling Hand Gestures in Ubiquitous Environment 145

Fig. 3. The analysis of a gesture that entails the shaking of the hand gathered from wii remote

remote and sends them using Transmission Control Protocol/Internet Protocol
(Tcp/Ip) to the appropriate authenticated device “Network distributer”. On each de-
vice there is an application for receiving the data and checking data appropriate re-
ceiving order. The collected data pass into three levels of preprocessing for the gath-
ered signal to obtain better recognition of the hand gesture. Fig. 3. shows the analysis
of a gesture that entails the shaking of the hand.

The core of the recognition engine was built using a slightly modified DP-
Matching algorithm for recognizing users’ hand gestures. The cost function of the
algorithm has been calculated as Euclidean distances between two 3d vectors, as
shown in Equation 1, where p{x,y,z} is one of the accelerometer readings of a user's
hand gesture and q{x,y,z} is the accelerometer readings inside the list of stored template
hand gestures.

Cost= () () ()2 222
zzyyxx qpqpqp −+−+− (1)

The minimum value between a user's hand gesture and all stored template gestures
is calculated. The result value should be less than the threshold value, which depends
on the sensitivity of the application.

3.3 UbiGesture Customization/Interaction

We have designed two prototype applications, one for customizing hand gestures and
the other for using defined hand gestures with developer's applications. The command
map translates the gesture commands into application understandable events. In the
current version of UbiGesture, a hand gesture is translated into keyboard-shortcut
sequences. Each keyboard shortcut sequence is mapped to an interface or application
function. The application developer has to list all application functions and features in

146 A. Atia et al.

the main system repository. The interface extracts the features and exposes them for
user customization. The customization interface always compares the entered gesture
with the stored gestures to avoid conflicts and alarming the user. The interaction inter-
face compares the user’s captured hand gesture with all the templates, returns the
minimum distance, and compares it with the threshold value. If the minimum distance
is below the threshold value, it will execute the command; otherwise, it will ignore
the gesture.

3.4 Gesture Profile

A gesture profile is recorded in the main repository of UbiGesture. This record is
composed of the user, location, device, application, application functions and re-
corded hand gesture. The gesture profile is the key record in this research, and when-
ever the user changes his or her context, the appropriate gesture profile will be
downloaded on the device of interaction. From this profile, the system extracts the
rest of the information such as the user’s preferences and hand gestures. The profile is
stored in the network for further access from different locations.

4 Primary Evaluation

For a primary evaluation, we ran experiments with three volunteers. All volunteers
were between the ages of 20 and 25, and all were computer science specialists. The
customization of hand gestures, which depends on location, its effect on the error
recognition rate, and interaction speed, was tested. In addition, we studied the effect
of imposing position and social parameters on users interacting with predefined hand
gestures. A test bed was established using two Bluetooth location-discovery PCs in
two different rooms. The first room (Room A) had a large display screen and a three-
seater sofa. The second room (Room B) had a large display screen only (see Fig. 4.).

Volunteers used their cellular phones as an identification device. A prototype ap-
plication for image manipulation was developed using Microsoft C\# and Windows
Presentation Foundation. Table 1 shows the application’s 20 functions. Predefined
hand gestures for those functions were set to cover complex, simple, different

Fig. 4. User positions in Room B (left) and Room A (right)

 UbiGesture: Customizing and Profiling Hand Gestures in Ubiquitous Environment 147

Table 1. Application functions and gesture patterns

Function
Name

Gesture
pattern

Function
Name

Gesture
pattern

Function
Name

Gesture
pattern

Zoom in all
pictures

 Zoom camera
out

 Move
camera up

Zoom out
all pictures

 Take picture Move
camera down

Start PTZ
camera

 Rotate image Zoom
camera in

Show image Double
Shake

Crop image Browse
down

Shake +

Close
application

 Black white Browse left Shake +

Move
camera right

 Save captured
image, close

 Browse right Shake +

Move
camera left

 Browse up Shake +

geometrical shapes and entailed handshake gestures. These different shapes enable
users to imagine what hand gesture he or she can customize using his or her hands.

4.1 Experimental Setup

The administrator granted permission for volunteers to access Rooms A and B, access
the big display screen in both rooms, and run the photo application on both devices.
The administrator also set a default authentication gesture to start the devices. The
developer made all the applications accessible by keyboard shortcuts. For example, to
open an image in full view, volunteers select an image by pressing the keyboard ar-
rows and "v". To zoom in, he presses "z", to zoom out, "o", and so on. The Adminis-
trator stored the application functions and their corresponding keyboard shortcuts in
the main repository. The volunteers were asked to perform two sequences of hand
gestures. The first sequence was to browse images, view in full view, rotate, crop, and
add black and white effects. The second sequence was to capture an image using a
pan tilt zoom (PTZ) camera and save it.

The first experiment involved a full sequence of pre-defined hand gestures. The
volunteers were asked to do the experiment in two positions; standing and sitting on
the sofa. We put a border between each sofa seat to simulate the presence of another
person. The volunteers should not touch this border during the experiments.

The second experiment was to test the UbiGesture on the customization of hand
gestures per location. A volunteer customized his hand gestures for browsing images
in a sitting position in Room A, (Customization Scenario 1). Then we asked the vol-
unteer to customize his hand gestures for capturing a picture in a standing position in
Room B (Customization Scenario 2).

148 A. Atia et al.

4.2 Results and Discussion

The volunteers were asked to enter 22 gestures in sequence (one session), and they
had to make three sessions per experiment, for a total of 198 hand gestures. We meas-
ured the average number of hand gestures to finish scenario 1 and 2 (Fig. 5.5a) and
the average interaction time (Fig. 5.5b).The results show that using customized hand
gestures reduces the interaction time and number of hand gestures by an average of 47
percent.

Fig. 5. (a) Average total number of gestures per session, (b) Average time to finish session

Fig. 6. Average error count of hand gesture sequence

Table 2. Volunteers’ satisfaction results for UbiGesture system

Question Average
Was it easy to interact using predefined hand gestures in a
standing position?

1.67

Was it easy to interact using predefined hand gestures in a
sitting position?

2.33

Was the customization easy? 2.67
Was it easy to interact using customized hand gestures in a
sitting position?

4.33

How many times did you touch the sofa border? 4

 UbiGesture: Customizing and Profiling Hand Gestures in Ubiquitous Environment 149

The average time needed to customize the hand gestures for Customization Scenar-
ios 1 and 2 was 3 minutes and 20 seconds. When using the predefined hand gestures
in the sitting position and interacting with the application, we observed that the volun-
teers hit the borders or left the seat many times to gesture. In real situations, these
gestures may annoy others close by. Also it was remarked that the volunteer some-
times failed to perform the predefined hand gestured towards lower body. Fig.6 shows
the average error counts to execute the sequence of hand gestures. The peek seen in
Average error count of hand gesture sequence6 for gesture "Browse Right" using a
predefined hand gesture and in a sitting position, explains how hard it was for the
volunteer to gesture.

The volunteer tried to avoid touching the border nearest to him, so he failed in
completing the gesture. When the volunteer was able to customize this gesture, the
error rate and time dramatically decreased. When the volunteers completed all the
experiments, we asked them to answer a short questionnaire by giving a score from 1
to 5 (5 meaning very good). The results are listed in Table 2. We received comments
from the volunteers about the need for a GUI feedback showing the pattern of the
customized gestures. Sometimes the volunteers forgot the pattern of the gesture they
made and requested to re-customize the gesture.

5 Conclusion and Future Work

We developed the UbiGesture system, which profiles a user’s gestures according to
specific parameters. The system was built using inexpensive resources making it more
available to more users. The system also enables developers to add hand gestures to
their applications in a few easy steps. The end users can customize their hand-gesture
profiles depending on the context, which gives them more flexibility and intuitive
interaction. Moreover, we also proposed a solution for starting devices in a shared-
resource ubiquitous environment. Using two-handed gestures is a more intuitive way
in human interaction. We need to evaluate the usability of UbiGesture by running
different scenarios and test beds. We proposed user adapted-systems; however, we
need to address concerns about system-adapted hand gestures in which a system rec-
ommends a suitable gesture for users depending on the context.

References

1. Baudel, T., Beaudouin-Lafon, M.: Charade: remote control of objects using free-hand ges-
tures. Commun. ACM 36, 28–35 (1993)

2. Keates, S., Robinson, P.: The use of gestures in multimodal input, pp. 35–42 (1998)
3. Kurze, M.: Personalization in multimodal interfaces, pp. 23–26 (2007)
4. Kawsar, F., Nakajima, T.: Persona: a portable tool for augmenting proactive applications

with multimodal personalization support, pp. 160–168 (2007)
5. Ayman, A., Takahashi, S., Tanaka, J.: Coin Size Wireless Sensor Interface for Interaction

with Remote Displays, pp. 733–742 (2007)
6. Nakajima, T.: How to reuse existing interactive applications in ubiquitous computing envi-

ronments?, pp. 1127–1133 (2006)

150 A. Atia et al.

7. Ronkainen, S., Hakkila, J., Kaleva, S., Colley, A., Linjama, J.: Tap input as an embedded
interaction method for mobile devices, pp. 263–270 (2007)

8. Ayman, A., Takahashi, S., Sato, D., Tanaka, J.: Evaluating interaction with Popie using
coin size wireless sensor, pp. 4-17–4-18 (2008)

9. SunSpot, http://www.sunspotworld.com/
10. Ubisense, http://www.ubisense.net/
11. Wii Remote, http://www.nintendo.com/wii
12. Bruegge, B., Teschner, C., Lachenmaier, P., Fenzl, E., Schmidt, D., Bierbaum, S.: Pinoc-

chio: conducting a virtual symphony orchestra, pp. 294–295 (2007)
13. Lee, H.-J., Kim, H., Gupta, G., Mazalek, A.: WiiArts: creating collaborative art experience

with WiiRemote interaction, pp. 33–36 (2008)
14. Shirai, A., Geslin, E., Richir, S.: WiiMedia: motion analysis methods and applications us-

ing a consumer video game controller, pp. 133–140 (2007)
15. Schlomer, T., Poppinga, B., Henze, N., Boll, S.: Gesture recognition with a Wii controller,

pp. 11–14 (2008)
16. Sanchez, J.-M., Cano, J.-C., Calafate, C., Manzoni, P.: BlueMall: a bluetooth-based adver-

tisement system for commercial areas, pp. 17–22 (2008)

	UbiGesture: Customizing and Profiling Hand Gestures in Ubiquitous Environment
	Introduction
	Related Work
	UbiGesture Architecture
	User Identification Module
	Data Gathering and Recognition
	UbiGesture Customization/Interaction
	Gesture Profile

	Primary Evaluation
	Experimental Setup
	Results and Discussion

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

