Abstract
In this paper, we present a new image segmentation method based on energy minimization for iteratively evolving an implicit active contour. Methods for active contour evolution is important in many applications ranging from video post-processing to medical imaging, where a single object must be chosen from a multi-object collection containing objects sharing similar characteristics. Level set methods has played a fundamental role in many of these applications. These methods typically involve minimizing functionals over the infinite-dimensional space of curves and can be quite cumbersome to implement. Developments of markov random field (MRF) based algorithms, ICM and graph-cuts, over the last decade has led to fast, robust and simple implementations. Nevertheless, the main drawback of current MRF methods is that it is intended for global segmentation of objects. We propose a new MRF formulation that combines the computational advantages of MRF methods and enforces active contour evolution. Several advantages of the method include ability to segment colored images into an arbitrary number of classes; single parameter which can control region boundary smoothness; fast, easy implementation, which can handle images with widely varying characteristics.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kass, M., Witkin, A.P., Terzopoulos, D.: Snakes: Active contour models. IJCV 1(4), 321–331 (1988)
Osher Stanley, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces, October 2002. Springer, Heidelberg (2002)
Paragios, N.: Curve propagation, level set methods and grouping. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, ch. 9, pp. 145–159. Springer, Heidelberg (2005)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. Jour. Comput. Vis. 22(1), 61–79 (1997)
Chan, T., Vese, L.: Active contours without edges. IEEE trans. on Image Proc. 10(2), 266–277 (2001)
Mansouri, A.-R., Mitiche, A., Vázquez, C.: Multiregion competition: a level set extension of region competition to multiple region image partitioning. Comput. Vis. Image Underst. 101(3), 137–150 (2006)
Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Stat. Soc. 48(3), 259–302 (1986)
Ishikawa, H.: Exact optimization for markov random fields with convex priors. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1333–1336 (2003)
Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. Int. J. Comput. Vision 70(2), 109–131 (2006)
Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmentation using an adaptive GMMRF model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004)
Rother, C., Kolmogorov, V., Blake, A.: ”grabcut”: interactive foreground extraction using iterated graph cuts, pp. 309–314 (2004)
Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: Proc. of International Conference on Computer Vision, vol. 1, pp. 105–112 (2001)
Gonzalez, R.C., Woods, R.E.: Digital image processing. Prince Hall (2001)
Xu, N., Ahja, N., Bansal, R.: Object segmentation using graph cuts based active contours. CVIU 107(3), 210–224 (2007)
Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley Interscience, Hoboken (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jodoin, PM., Saligrama, V., Konrad, J. (2009). Implicit Active-Contouring with MRF. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2009. Lecture Notes in Computer Science, vol 5627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02611-9_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-02611-9_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02610-2
Online ISBN: 978-3-642-02611-9
eBook Packages: Computer ScienceComputer Science (R0)